Anions Technical Review Checklist (TRC)

Fluoride (F) Chloride (Cl) Nitrite (NO ₂) Bromi	de (Br) <u>/</u> OP# <u>R3-</u>				Sulfate (SO ₄) Full Anions
	For Inter	rnal Us	e Only		
Site Name: DIMOCK RETIDENTIAL GROW	ινρυμαΤ	ØWO:	#: 12	05011	
Analyst: RON ALTMAN	· · · · · · · · · · · · · · · · · · ·	_ Date	given	to Reviewer:	06107/12
Matrix: Solid Aqueous	Other:	_		_	
Program: Superfund RCRA	WPD (NPDE	s) []	SDWA Oth	ər:
The signature below indicates the follow	ing:				
 This data meets the needs of the customer accord The analysis was performed as per the SOP, or e All documentation needed to recreate the analysis Data Review status set to Peer Reviewed in Elementary 	xception es has be nent.	s docur en revie	nented. ewed.		
Peer Reviewer Signature Lulule			Dat	e Accepted _	6/8/12
If any data for this case is stored with another case is	file, give	Site Na	ame and	WO# NA	
Peer Reviewer Completes Section Below General:	YES	 <u>NO</u>	<u>N/A</u>	•	Comments
Raw data is identified with sample IDs; site name, WO#, analyst name, date of analysis.	_/_				<u> </u>
Quality Control: (This section contains specific QC criteria taken	ı from S YES	Section NO	9 of the N/A	method specific	SOP Batch QC Table.) Comments
Ensure that the appropriate method was selected.				-	
Is the method identified and analyte name(s) and unit(s) included?				- \	
Is the quantitation limit(s) stated and appropriate for the project DQOs?	·				·
Ensure that the cited method was followed.					
Are reagent and standard preparations sufficiently described to verify concentrations on logsheets?	,				
Is sample preparation documented on logsheets?					<u> </u>
(preservation checks, distillation, digestion, etc.) Was the instrument calibrated to bracket reported results? (including analytical balance, electrodes, etc.)	<u>~</u>				
Are calibration parameters (R ² , slope, intercept) acceptable?	<u></u>		•		
Are points from the curve omitted following Instrument Calibration Evaluation Policy?					
Is the calibration independently verified? (audit or standard from second source)				•	
Was mid-level check standard recovery ± 10 % of TV?					

I:\ASQAB_AT Team\Checklists\ Anions TRC 2008

Feb 2008

Page 1 of 3

Anions Technical Review Checklist (TRC)

	For Inter			
	YES	NO	N/A	Comments
as NQL recovery ± 40% of TV except ± 50%				
r PO ₄ -3?	<u>~</u>			
re the sample #s clearly identified and matched to	,			
e assignment sheet?				
re sample preparation steps described with fficient detail to recalculate dilution or				
ncentration factors?	. /			
re technical holding times met? (Include time	<u> </u>			
d date of sample collection, preparation and				
alysis dates are recorded)	<u> </u>	4		
sure that the raw data is complete and legible.	1			
e run orders clear?				
the raw data package complete, labeled, and				
gible with date and analyst signature?	/			
sure that all appropriate QC was analyzed and				
ecked against acceptance limits.	\checkmark			
e the appropriate measures of precision and				
curacy included? (blanks, dups, spikes)				
e QC charts up-to-date, outliers flagged and				• •
rrective actions documented? Attach copy of	/			
nits or note below.				
e qualifier codes correctly applied?	- ∠			
alculations/Report:				
	YES	NO	N/A	Comments
lculations and transcriptions checked.	1			
e equations shown and at least 10%				
culations checked?				
e appropriate significant figures reported and				
al reported results circléd or otherwise clearly	,			
entified?				
anual integration verified and documented?				Lipatiness-
ement Draft Report reviewed.				1 - 1,184,074)
Element results check back to the raw data?				<u> </u>
the report free of typographical and				
ammatical errors and does it follow the	,			
rrent format?				
e analyst observations supported by the raw				
ta? (interferences, lab accident, etc.)				
nalyte % Recovery Upper Precision Limits Limits				
Limits Limits 80.46 - 121.38 RPD = 15				
Limits Limits 80.46 - 121.38 RPD = 15 1 85.04 - 112.72 RPD = 10				
Limits Limits $80.46 - 121.38$ RPD = 15 1 $85.04 - 112.72$ RPD = 10 $O_2^ 61.64 - 119.96$ RPD = 10				
Limits Limits 80.46 - 121.38 RPD = 15 85.04 - 112.72 RPD = 10 O ₂ 61.64 - 119.96 RPD = 10 r 91.89 - 105.27 RPD = 10				
Limits Limits 80.46 - 121.38 RPD = 15 85.04 - 112.72 RPD = 10 102 61.64 - 119.96 RPD = 10 r 91.89 - 105.27 RPD = 10 103 83.20 - 125.20 RPD = 10				
Limits Limits $80.46 - 121.38$ RPD = 15 1 $85.04 - 112.72$ RPD = 10 $O_2^ 61.64 - 119.96$ RPD = 10 r $91.89 - 105.27$ RPD = 10	√			

I:\ASQAB_AT Team\Checklists\ Anions TRC 2008

Feb 2008

Page 2 of 3

Anions Technical Review Checklist (TRC)

For Internal Use Only

Additional Comments by Peer Reviewer:	
· · · · · · · · · · · · · · · · · · ·	
·	· · · · · · · · · · · · · · · · · · ·
Analyst Ensures that the Data Case File is	Complete and Accurate as per SOP R3QA-066:
Bench sheet or Work Order list	Appropriate TV sheets / Certificates of Analysis
✓ Sample Prep logs	Element Peer Review report
Instrument run log	Raw data
Standard/Reagent Prep log	Data status set to analyzed
Additional Comments by Analyst on data iss	sues:
79874	·
	•

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

egio 3 E ironmen I Scienc Center

Dffice Ar lytical Services and Quality Assurant

701 Mayor ad

For Meac Maryland 075, 5350

Report Narrative

618112 1L

> 1205011 DRAFT 06 07 12 1152 Page 1 of 11

egio 3 E vironmen I Scient Center

Office Ar lytical Services and Quality Assurance

701 Mascon and
For Meac Miryland 0755 5350

Report Narrative

The EPA Region 3 Laboratory's Quality System is NELAP accredited. The National Environmental Laboratory Accreditation Program (NELAP) is a voluntary environmental laboratory accreditation association of State and Federal agencies.

General Notes:

This report contains results for all requested analyses.

All samples were received intact and at proper temperature.

Where applicable, sample results are qualified based on the highest level concentrations of field QC contamination found in the field, equipment, or trip blanks.

Unless otherwise noted below, all required instrument and method QC was run and was within criteria.

Metals Analysis Note:

Uranium, strontium, lithium, tin and titanium were analyzed as an on-demand analysis.

The detectable sample results for uranium were qualified estimated "J" due to a quality control sample outside of acceptance limits.

The quantitation limit for selenium for sample 1205011-10 was qualified estimated "UJ" due to the matrix spike outside of acceptance limits.

SVOAs Analysis Note:

All samples were extracted by EPA SW-846 Method 3520C followed by analysis using EPA SW-846 Method 8270D. Refer to notes in case file for additional information regarding the analysis.

For this project one additional compound is added to the SVOC analysis; I-methylnaphthalene. This is a non-routine analysis. All current in-house quality control limits were met.

For all samples, quantitation limits for 2,4-dinitrophenol are rejected qualifed "R" due to zero percent recovery in the low-spike quality control check (BS1) and less than 10% recovery in the mid-level spike quality control check (BS2). For all samples 4,6-dinitro-2-methylphenol and pentachlorophenol had less than 10% recovery in the low-spike quality control check (BS1) but within acceptance limits in the mid-level spike quality control check (BS2); therefore, quantitation limits are raised to the mid-level value. In the report, only 21 compounds are reported for blank spike quality control check samples. Quality control information about the additional spiked compounds is available in the case file.

Results for a limited number of compounds found in all samples have been qualified "B" because of contamination found in either the method blank, field blank, or equipment blank.

Glycols by HPLC/MS/MS Note:

Samples were analyzed for diethylene glycol (DiG) (CAS# 111-46-6), triethylene glycol (TriG) (112-27-6), tetraethylene glycol (TeG) (112-60-7), 2-butoxyethanol (2-Bu) (111-76-2) and 2-methoxyethanol (2-Me)(109-86-4) by HPLC/MS/MS (inst id: TQD-LCMSMS) on a Waters Atlantis dC18 3um 2.1 x 150mm column (s/n- 0141301481).

An HPLC/MS/MS method does not currently exist for these analytes. SOP R3QA239 is in preparation. ASTM D 7731-11 and EPA SW-846 Methods 8000C and 8321 were followed for method development and QA/QC limits where applicable. All applicable OASQA On Demand QA/QC protocols were followed. All QC were within criteria. The aqueous samples were injected without extraction onto the HPLC/MS/MS system.

Refer to notes in the case file for additional information regarding the analysis.

Nitrite/Nitrate Analysis Note:

Samples were run as an 'On-Demand' analysis.

Total Nitrogen Analysis Note:

egio 3 Enironmen I Scient Center

Diffice Ar lytical Services and Quality Assuran

701 Majord ad

For Meas Maryland 075: 5350

Report Narrative

Samples were run as an 'On-Demand' analysis.

VOA Analysis Note:

Acrylonitrile was analyzed on-demand using CLP equivalent methodology. This analyte does not appear in the data tables or the QC summary and all data for this compound is summarized here. Acrylonitrile was not detected in any of the samples above a quantitation limit of 2 ug/L. A four point curve was analyzed (2, 5, 10 and 20 ug/L). The samples were preserved to a pH<2 with HCl. A low level second source blank spike analyzed at a concentration of 2 ug/L had a recovery of 101%. A mid level second source blank spike was analyzed at a concentration of 5 ug/L with a recovery of 109% and at 10 ug/L with a recovery of 100%.

Matrix spike/matrix spike duplicate samples were prepared with sample 1205011-11 but were not analyzed due to instrument failure.

2-Chloroethylvinyl ether is not included in the analysis. 2-chloroethylvinyl ether breaks down in acidified samples.

Region & Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Site Name: Dimock Residential Groundwater

Project #: DAS R33989

ANALYTICAL REPORT FOR SAMPLES

Station ID	Laboratory ID	Matrix	Date Sampled	Date Received
FB22	1205011-01	Water	05/22/12 11:58	05/23/12 12:22
HW64	1205011-02	Drinking Water	05/22/12 11:10	05/23/12 12:22
HW64-P	1205011-03	Drinking Water	05/22/12 11:40	05/23/12 12:22
FB23	1205011-08	Water	05/23/12 13:25	05/24/12 11:53
HW63z	1205011-09	Drinking Water	05/23/12 13:10	05/24/12 11:53
HW63	1205011-10	Drinking Water	05/23/12 13:09	05/24/12 11:53
HW62	1205011-11	Drinking Water	05/22/12 15:59	05/24/12 11:53

1205011 DRAFT 06 07 12 1152

Page 4 of 11

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Site Name: Dimock Residential Groundwater

Project #: DAS R33989

Anions

Analyte		Result	Flags/ Qualifiers	Quantitation Limit	Units	Dilution	Prepared	Analyzed	Method/SOP#
Lab ID: Station ID: Sample Matrix: Collected:	1205011-01 FB22 Water 05/22/2012								
Bromide		· U	✓	0.500	mg/L	1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA
Chloride		U	~	0.250	mg/L	1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA
Fluoride		υ	/	0.100	mg/L	1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA
Sulfate as SO4		U	V	0.500	mg/L	1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA

Anions

Analyte		Result	Flags/ Qualifiers	Quantitation Limit	Units	Dilution	Prepared	Analyzed	Method/SOP#
Lab ID: Station ID: Sample Matrix: Collected:	1205011-02 HW64 Drinking Water 05/22/2012								-
Bromide		U 🗸	•	0.500	mg/L	. 1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA
Chloride		1.32 🗸	,	0.250	mg/L	1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA
Fluoride		U		0.100	mg/L	1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA
Sulfate as SO4		8.03 - 🗸	,	0.500	mg/L	1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA

1205011 DRAFT 06 07 12 1152

Page 5 of 11

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Site Name: Dimock Residential Groundwater

Project #: DAS R33989

Anions

Analyte		Result	Flags/ Qualifiers	Quantitation Limit	Units	Dilution	Prepared	Analyzed	Method/SOP#
Lab ID: Station ID: Sample Matrix: Collected:	1205011-03 HW64-P Drinking-Water 05/22/2012						•		
Bromide		υ×		0.500	mg/L	1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA10
Chloride		1.32 🗸		0.250	mg/L	1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA10
Fluoride		UV		0.100	mg/L	1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA10
Sulfate as SO4		8.04 🗸		0.500	mg/L	1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA10

Anions

Analyte		Result	Flags/ Qualifiers	Quantitation Limit	Units	Dilution	Prepared	Analyzed	Method/SOP#
Lab ID: Station ID: Sample Matrix: Collected:	1205011-08 FB23 Water 05/23/2012								
Bromide		U 🗸		0.500	mg/L	. 1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA1
Chloride		U 🗸		0.250	mg/L	1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA1
Fluoride		U 🗸		0.100	mg/L	1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA1
Sulfate as SO4		U 🗸		0.500	mg/L	1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA1

1205011 DRAFT 06 07 12 1152

Page 6 of 11

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Site Name: Dimock Residential Groundwater

Project #: DAS R33989

Anions

Analyte		Result	Flags/ Qualifiers	Quantitation Limit	Units	Dilution	Prepared	Analyzed	Method/SOP#
Lab ID: Station ID: Sample Matrix: Collected:	1205011-09 HW63z Drinking Water 05/23/2012								
Bromide		υ 🗸		0.500	mg/L	1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA1
Chloride		11.9 🗸	•	0.250	mg/L	1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA1
Fluoride		υν		0.100	mg/L	I	06/04/12	06/04/12 11:14	EPA 300.0/R3QA1
Sulfate as SO4		13.8 🗸		0.500	mg/L	1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA1

Anions

Analyte		Result	Flags/ Qualifiers	Quantitation Limit	Units	Dilution	Prepared	Analyzed	Method/SOP#
Lab ID: Station ID: Sample Matrix: Collected:	1205011-10 HW63 Drinking Water 05/23/2012								
Bromide		U 🗸		0.500	mg/L	1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA
Chloride		11.9 🗸	,	0.250	mg/L	1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA
Fluoride		υV		0.100	mg/L	1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA
Sulfate as SO4		13.8	/	0.500	mg/L	1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA

1205011 DRAFT 06 07 12 1152

Page 7 of 11

DIM0205729

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Site Name: Dimock Residential Groundwater

Project #: DAS R33989

Anions

Analyte		Result	Flags/ Qualifiers	Quarititation Limit	Units	Dilution	Prepared	Analyzed	Method/SOP#
Lab ID: Station ID: Sample Matrix: Collected:	1205011-11 HW62 Drinking Water 05/22/2012								
Bromide		ŭ 🗸	-	0.500	mg/L	1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA
Chloride		28.0 🗸		1.25	mg/L	5	06/04/12	06/04/12 11:14	EPA 300.0/R3QA
Fluoride		UV		0.100	mg/L	1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA
Sulfate as SO4		10.0 🗸	•	0.500	mg/L	1	06/04/12	06/04/12 11:14	EPA 300.0/R3QA

Analyte

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland, 20755-5350

Site Name: Dimock Residential Groundwater

Project #: DAS R33989

RPD

RPD

Limit

Notes

%REC

Limits

QC Data Anions

Units

Quantitation

Limit

Result

Spike

Level

Source

Result

%REC

Timayee			Onto	ECTCI ICOS	, , , , , , , , , , , , , , , , , , ,	. Dilling	IN D		
Batch BF20702 - Anions Water Pre	р		-				•		
Blank (BF20702-BLK1)				Prepared: 06/04/	12 11:08	Analyzed: 0	6/04/12	11:14	
Bromide	U 🗸	0.500	mg/L						
Chloride	U 🗸	0.250	п						
Fluoride	U 🗸	0.100	п						
Sulfate as SO4	U 🖊	0.500	II .						
LCS (BF20702-BS1)				Prepared: 06/04/	12 11:08	Analyzed: 0	06/04/12	11:14	
Bromide	10.0 🗸	0.500	mg/L	10.000	100	90-110 س			
Chloride	5.01	0.250	11	5.0000		~ 90-110			
Fluoride	2.01 🗸	0.100	"	2.0000	100	90-110			
Sulfate as SO4	10.1	0.500	п	10.000	1012	90-110 مر			
Duplicate (BF20702-DUP1)	Source	e: 120501	1-11	Prepared: 06/04/	12 11:08	Analyzed: 0	6/04/12	11:14	
Bromide	U 🗸	0.500	mg/L	U				15	
Fluoride	U 🗸	0.100	b	U				10	
Sulfate as SO4	9.89 🗸	0.500	ır	10.0)		1	10	
Duplicate (BF20702-DUP2)	Source	e: 120501	1-11	Prepared: 06/04/	12 11:08	Analyzed: 0	6/04/12	11:14	
Chloride	28.9 🗸	1.25	mg/L	28.0)		3	10	
Matrix Spike (BF20702-MS1)	Source	e: 120501	1-11	Prepared: 06/04/			6/04/12	11:14	
Bromide	5.02 🗸	0.500	mg/L	5.0000 U	100	91.9-105.3			
Fluoride	0.978 🗸	0.100	, D	1.0000 U	98 י	80.5-121.4			
Sulfate as SO4	14.9 🗸	0.500	n	5.0000 10.0) ⋅ 98•	86.4-112.5			
Matrix Spike (BF20702-MS2)		e: 120501	1-11	Prepared: 06/04/	12 11:08	Analyzed: 0	06/04/12	11:14	
Chloride	40.9	1.25	mg/L	12,500 28.0	103	85-112.7			
Reference (BF20702-SRM1)				Prepared: 06/04/	12 11:08	Analyzed: 0	6/04/12	11:14	
Bromide	10.0		mg/L	10.000	100	90-110 ص			
Chloride	5.00		IJ	5.0000	100	∽ 90-110			
Fluoride	1.97 🗸		u	2,0000	99	~ 90-110			
Sulfate as SO4	10.1		II .	10.000	1016	90-110			

1205011 DRAFT 06 07 12 1152

Page 9 of 11

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Site Name: Dimock Residential Groundwater

Project #: DAS R33989

Notes and Definitions

%REC

Percent Recovery

RPD

Relative Percent Difference

U

Analyte included in the analysis, but not detected at or above the quantitation limit.

Quantitation Limit: The lowest concentration of an analyte that can be reliably measured within specified limits of precision and accuracy for a specific laboratory analytical method and that takes into account analytical adjustments made during sample preparation and analysis.

REPORTING PROTOCOL FOR SOLID SAMPLE RESULTS: Percent Solids (percent dry wt at 105 degrees C) determinations are routinely performed for most organic and inorganic analyses. Consequently, these samples are analyzed wet and converted to a dry weight result for reporting purposes. If metals and mercury analyses are requested, they are routinely prepared for analyses by an initial drying at 60 degrees C, homogenized prior to digestion, and are analyzed and reported on a dry weight basis. Oil-type samples are analyzed and reported on a wet weight basis for all analyses because of the nature of the sample matrix. Any exceptions to this protocol will be noted in the narrative.

1205011 DRAFT 06 07 12 1152 Page 10 of 11

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Items for Project Manager Review

LabNumber	Analysis	Analyte	Exception	
	Anions By IC 300.0	(Water)	Special Units: (mg/L)	
1205011-01	Anions By IC 300.0		Status is Analyzed	
1205011-02	Anions By IC 300.0		Status is Analyzed	
1205011-03	Anions By IC 300.0		Status is Analyzed	
1205011-08	Anions By IC 300.0		Status is Analyzed	
1205011-09	Anions By IC 300.0		Status is Analyzed	
1205011-10	Anions By IC 300.0		Status is Analyzed	
1205011-11	Anions By IC 300.0		Status is Analyzed	

•

Printed: 6/4/2012 9:30:21AM

1205011

U.S. EPA Region 3 - FOR INTERNAL USE ONLY

Client:

OSWER - Emergency Response

Project:

DAS R33989

Final Report Due: 06/15/2012

Project Manager: Cindy Caporale

Site Name: Dimock Residential Groundwater

Acct#: 2012T03N303DC6A3TARS00

Report To:

Client Project Manager: Rich Fetzer

Email: Phone: fetzer.richard@epa.gov (610) 861-2087

Fax:

Project/WO Comments

Unvalidated data = 7 days (refer to

Special Instructions)

Validated data = 21 days

Shelf

Analyst

EPA #3 Shelf 1C

EPA #3 Shelf 2C EPA #3 Shelf 7B

EPA #3 Shelf 8B

EPA #5 VOA

Received By:

Kevin Martin

Date Received:

05/23/12 12:22

Temperature Samples Received at: 3°C

Yes

Custody Seals Containers Intact

COC/Labels Agree Yes Preservation Confirmed Yes

Received On Ice Yes Radiation Checked Yes

ESAT INFO ONLY

Preliminary Report Due Date _____

ESAT Due Date

Complete

Not Complete

Need TDF

TDF#

Relinquished By:

Sample#

Sample#

1205011-01

Sample Name: FB22

Sample Type: SAM

Anions By IC 300.0

Sampled By:

Date Sampled

Expires:

Analysis Comments:

Sample Comments:

Lab\Report Matrix

Lab\Report Matrix

Date Sampled

Water\Drinking Water

06/19/12 11:58

11 Drinking Water

Water\Water

05/22/12 11:58

05/22/12 11:10

Received

Sample Logged In: 05/23/12 13:19 Sample Received: 05/23/12 12:22

Sample Logged In: 05/23/12 13:19

Sample Received: 05/23/12 12:22

Anions By IC 300.0

Sample Name: HW64

Sample Type: SAM

1205011-02

Sampled By:

Expires:

06/19/12 11:10

Analysis Comments: 11 Drinking Water

Sample Comments:

Lab\Report Matrix

Water\Drinking Water

05/22/12 11:40

Received

Sample Logged In: 05/23/12 13:19

Sample Type: SAM

Sample Name: HW64-P

1205011-03

Date Sampled

Sample Received: 05/23/12 12:22

Sample#

Sampled By:

Expires:

06/19/12 11:40

11 Drinking Water

Received

Anions By IC 300.0

Analysis Comments: Sample Comments:

Page 1 of 2

Sample# 1205011-08 Sample Name: FB23 Sample Type: SAM	Lab\Report Matrix Water\Water Date Sampled 05/23/12 13:25	Sample Logged In: 05/24/12 12:51 Sample Received: 05/24/12 11:53
Anions By IC 300.0	Sampled By: Expires: 06/20/12 13:25 Analysis Comments: 11 Drinking Water Sample Comments:	Received
Sample# 1205011-09 Sample Name: HW63z Sample Type: SAM	Lab\Report Matrix Water\Drinking Water Date Sampled 05/23/12 13:10	Sample Logged In: 05/24/12 12:51 Sample Received: 05/24/12 11:53
Anions By IC 300.0	Sampled By: Expires: 06/20/12 13:10 Analysis Comments: 11 Drinking Water Sample Comments:	Received
Sample# 1205011-10 Sample Name: HW63 Sample Type: SAM	Lab\Report Matrix Water\Drinking Water Date Sampled 05/23/12 13:09	Sample Logged In: 05/24/12 12:51 Sample Received: 05/24/12 11:53
Anions By IC 300.0	Sampled By: Expires: 06/20/12 13:09 Analysis Comments: 11 Drinking Water Sample Comments:	Received
Sample# 1205011-11 Sample Name: HW62 Sample Type: SAM	Lab\Report Matrix Water\Drinking Water Date Sampled 05/22/12 15:59	Sample Logged In: 05/24/12 12:51 Sample Received: 05/24/12 11:53
Anions By IC 300.0	Sampled By: Expires: 06/19/12 15:59 Analysis Comments: 11 Drinking Water Sample Comments: OC for SVOCs and VOCs	Received

ANIONS

PROGRAM

AND

QUANT METHOD

FILES

Sequence: , **«**Operator:

04Jun12

US Environmental Pro

Page 1 of 2 Printed: 6/4/2012 3:35:20 PM

Title: WO1205011 Dimock Residential Groundwater Analyst: Ron Altman EPA Method 300.0 SOP-R3QA108.110811

Datasource: Location:

Timebase:

#Samples:

DHMN8QM1_local

\$YS1 27

OCIONIS

SYS1\Import

Created: Last Update: 6/4/2012 10:40:55 AM by US Environmental Pro 6/4/2012 3:26:43 PM by US Environmental Pro

						-		
No.	Nai	me	Туре	Pos.	Inj. Vol.	Program	Method	Status
1	7	Standard 5	Unknown	1	20.0	Anion Dx-500	ANION TEST-new	Finished
2	⊡	Standard 1	Standard	2	20.0	Anion Dx-500	ANION TEST-new	Finished
3	⅓	Standard 2	Standard	3	20.0	Anion Dx-500	ANION TEST-new	Finished
4	∄	Standard 3	Standard	4	20.0	Anion Dx-500	ANION TEST-new	Finished
5		Standard 4	Standard	5	20.0	Anion Dx-500	ANION TEST-new	Finished
6	$\overline{\Omega}$	Standard 5	Standard	6	20.0	Anion Dx-500	ANION TEST-new	Finished
7	$\overline{\Omega}$	Standard 6	Standard	7	20.0	Anion Dx-500	ANION TEST-new	Finished
8	2	Custom Anion	Unknown	8	20.0	Anion Dx-500	ANION TEST-new	Finished
9	?	BLK	Unknown	9	20.0	Anion Dx-500	ANION TEST-new	Finished
10	?	BS	Unknown	10	20.0	Anion Dx-500	ANION TEST-new	Finished
11	2	Standard 1-CCV	Unknown	11	20.0	Anion Dx-500	ANION TEST-new	Finished
12	0	Standard 5-CCV	Unknown	12	20.0	Anion Dx-500	ANION TEST-new	Finished
13	8	1205011-01	Unknown	13	20.0	Anion Dx-500	ANION TEST-new	Finished
14	?	1205011-02	Unknown	14	20.0	Anion Dx-500	ANION TEST-new	Finished
15	2	1205011-03	Unknown	15	20.0	Anion Dx-500	ANION TEST-new	Finished
16	?	1205011-08	Unknown	16	20.0	Anion Dx-500	ANION TEST-new	Finished
17	?	1205011-09	Unknown	17	20.0	Anion Dx-500	ANION TEST-new	Finished
18	?	1205011-10	Unknown	18	20.0	Anion Dx-500	ANION TEST-new	Finished
19	2	1205011-11	Unknown	19	20.0	Anion Dx-500	ANION TEST-new	Finished
20	7	1205011-11-DUP	Unknown	20	20.0	Anion Dx-500	ANION TEST-new	Finished
21	?	1205011-11-MS	Unknown	21	20.0	Anion Dx-500	ANION TEST-new	Finished
22	2	Standard 5-CCV	Unknown	22	20,0	Anion Dx-500	ANION TEST-new	Finished
23	?	1205011-11-5x	Unknown	23	20.0	Anion Dx-500	ANION TEST-new	Finished
24	2	1205011-11-5x-DUP	Unknown	24	20.0	Anion Dx-500	ANION TEST-new	Finished
25	2	1205011-11-5x-MS	Unknown	25	20.0	Anion Dx-500	ANION TEST-new	Finished
26	2	Standard 5	Unknown	26	20.0	Anion Dx-500	ANION TEST-new	Finished
27	2	IBL	Unknown	27	20.0	Anion Dx-500	ANION TEST-new	Finished

Sequence: Operator:

04Jun12

US Environmental Pro

Printed: 6/4/2012 3:35:20 PM

Title: WO1205011 Dimock Residential Groundwater Analyst: Ron Altman EPA Method 300.0 SOP-R3QA108.110811

Datasource:

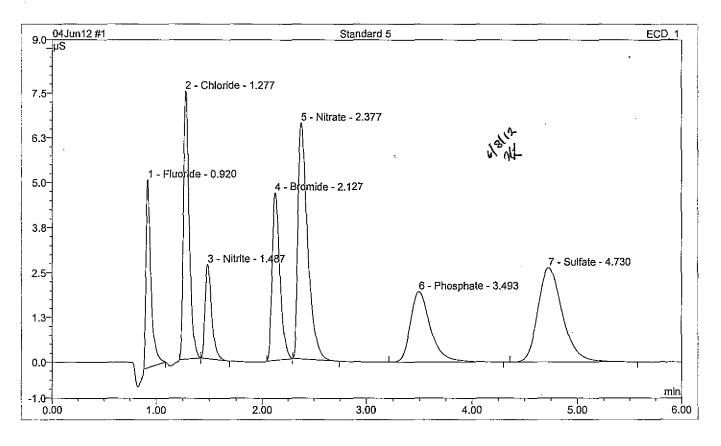
DHMN8QM1_local

Location: #Samples: SYS1\Import

Timebase:

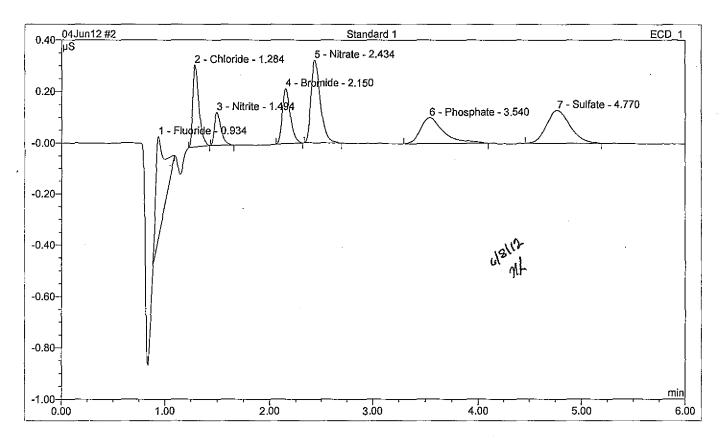
SYS1 27

06/64/12

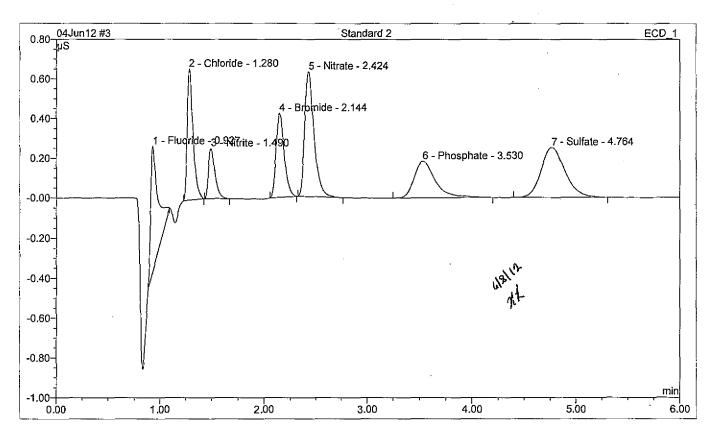

Created: Last Update: 6/4/2012 10:40:55 AM by US Environmental Pro 6/4/2012 3:26:43 PM by US Environmental Pro

No.	Nar	ทอ	Inj. Date/Time	Weight	Dil. Factor	ISTD Amount	Sample ID	Replicate ID	Comment
1	7	Standard 5	6/4/2012 10:44:11 AM	1.0000	1.0000	1.0000	•	01	
2	囿	Standard 1	6/4/2012 10:52:35 AM	1.0000	1.0000	1.0000		01	
3	鬲	Standard 2	6/4/2012 11:00:59 AM	1.0000	1.0000	1.0000		02	
4	囨	Standard 3	6/4/2012 11:09:23 AM	1.0000	1.0000	1.0000		03	
5	囨	Standard 4	6/4/2012 11:17:48 AM	1.0000	1.0000	1.0000		04	
6		Standard 5	6/4/2012 11:26:12 AM	1.0000	1.0000	1.0000		05	•
7		Standard 6	6/4/2012 11:34:37 AM	1.0000	1.0000	1.0000		06	
8	3	Custom Anion	6/4/2012 11:43:02 AM	1.0000	1,0000	1.0000		05	
9	?	BLK	6/4/2012 11:51:26 AM	1.0000	1.0000	1.0000		05	
10	?	B\$	6/4/2012 11:59:50 AM	1.0000	1.0000	1.0000		05	
11	?	Standard 1-CCV	6/4/2012 12:08:15 PM	1.0000	1.0000	1.0000		05	
12	?	Standard 5-CCV	6/4/2012 12:16:39 PM	1.0000	1.0000	1.0000		05	
13	?	1205011-01	6/4/2012 12:25:04 PM	1.0000	1.0000	1.0000		05	
14	7	1205011-02	6/4/2012 12:33:28 PM	1.0000	1.0000	1.0000		05	
15	2	1205011-03	6/4/2012 12:41:53 PM	1.0000	1.0000	1.0000		05	
16	2	1205011-08	6/4/2012 12:50:17 PM	1.0000	1.0000	1.0000		05	
17	?	1205011-09	6/4/2012 12:58:42 PM	1.0000	1.0000	1.0000		05	
18	?	1205011-10	6/4/2012 1:07:06 PM	1.0000	1.0000	1.0000		05	
19	3	1205011-11	6/4/2012 1:15:30 PM	1.0000	1.0000	1.0000		05	
20	?	1205011-11-DUP	6/4/2012 1:23:55 PM	1.0000	1.0000	1.0000		05	
21	7	1205011-11-MS	6/4/2012 1:32:20 PM	1.0000	1.0000	1.0000		05	
22	?	Standard 5-CCV	6/4/2012 1:40:45 PM	1,0000	1.0000	1.0000		05	
23	?	1205011-11-5x	6/4/2012 2:29:03 PM	1.0000	5.0000	1.0000		05	
24	?	1205011-11-5x-DUP	6/4/2012 2:37:28 PM	1.0000	5.0000	1.0000		05	
25	?	1205011-11-5x-MS	6/4/2012 2:45:52 PM	1.0000	5.0000	1.0000		05	
26	?	Standard 5	6/4/2012 2:54:17 PM	1.0000	1.0000	1.0000		05	
27	7	IBL	6/4/2012 3:11:54 PM	1.0000	1.0000	1.0000		05	

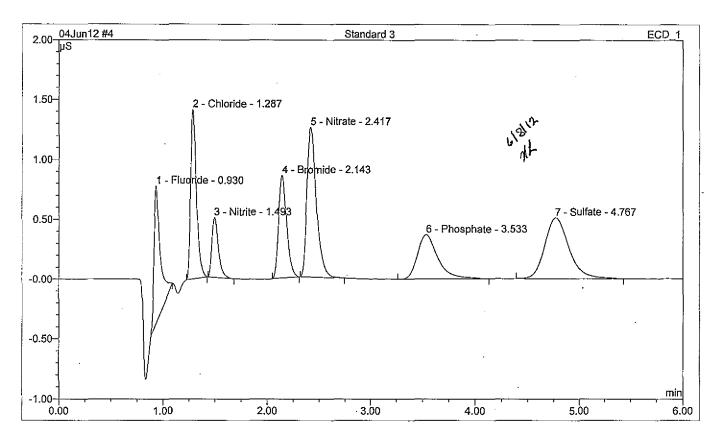
ANIONS


RAW DATA

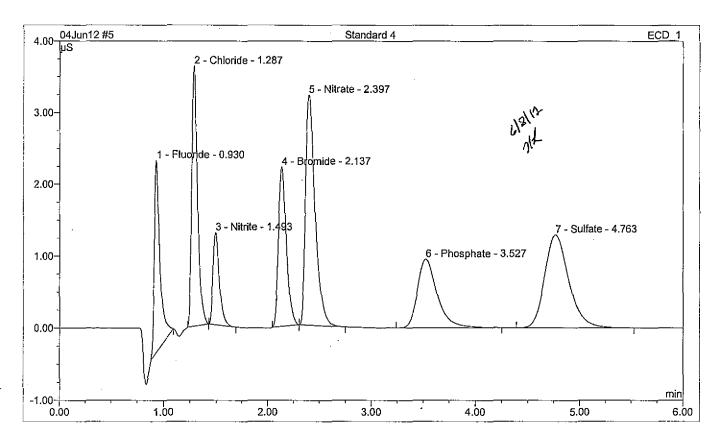
1 Standard	5		
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS
Sample Name:	Standard 5	Injection Volume:	20.0
Vial Number:	1	Channel:	ECD_1
Sample Type:	unknown	Suppressor Currrent	50 mA
Control Program:	Anion Dx-500	Flow Rate:	2.00
Quantif. Method:	ANION TEST-new	Dilution Factor:	1.0000
Recording Time:	6/4/2012 10:44	Sequence;	04Jun12
Run Time (min):	6.00	Column	AS4A


No.	Ret.Time	Peak Name	Amount	Area	Height	Reported Value
	min		ppm	μS*min	μŞ	ppm
1	0.92	Fluoride	1.8753	0.28844	5.23945	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
2	1.28	Chloride	4.9495	0.47167	7.47885	→
3	1.49	Nitrite	0.9973	0.18829	2.63691	
4	2.13	Bromide	9.9261	0.40626	4.67468	V
5	2.38	Nitrate	2.9820	0.71273	6.58680	
6	3.49	Phosphate	5.0089	0.43172	1.97272	
7	4.73	Sulfate	9.9633	0.70673	2.63528	

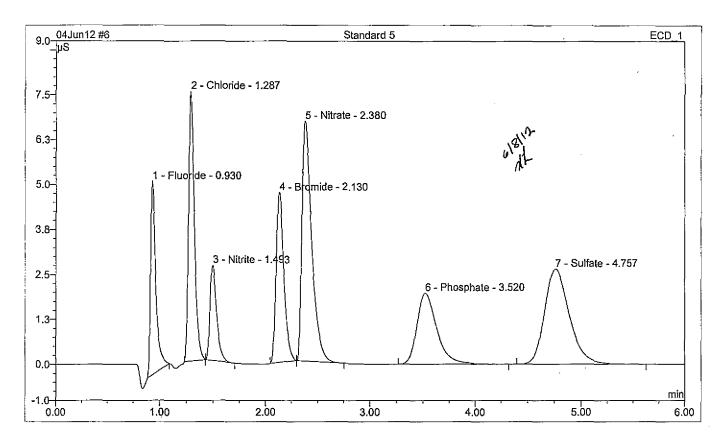
2 Standard	1		
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS
Sample Name:	Standard 1	Injection Volume:	20.0
Vial Number:	2	Channel:	ECD_1
Sample Type:	standard	Suppressor Currrent	50 mA
Control Program:	Anion Dx-500	Flow Rate:	2.00
Quantif, Method:	ANION TEST-new	Dilution Factor:	1.0000
Recording Time:	6/4/2012 10:52	Sequence;	04Jun12
Run Time (min):	6.00	Column	AS4A


No.	Ret.Time	Peak Name	Amount	Area	Height	Reported Value
	min		ppm	μS*min	μS	ppm
1	0.93	Fluoride	0.1042	0.03763	0.40569	\rightarrow
2	1.28_	Chloride	0.2411	0.02138	0.31854	V
3	1.49	Nitrite	0.0534	0.00924	0.12843	
4	2.15	Bromide	0.5293	0.01926	0.21338	
5	2.43	Nitrate	0.1617	0.03386	0.32142	
6	3.54	Phosphate	0.2793	0.02544	0.09995	
7	4.77	Sulfate	0.4948	0.03368	0.12802	✓

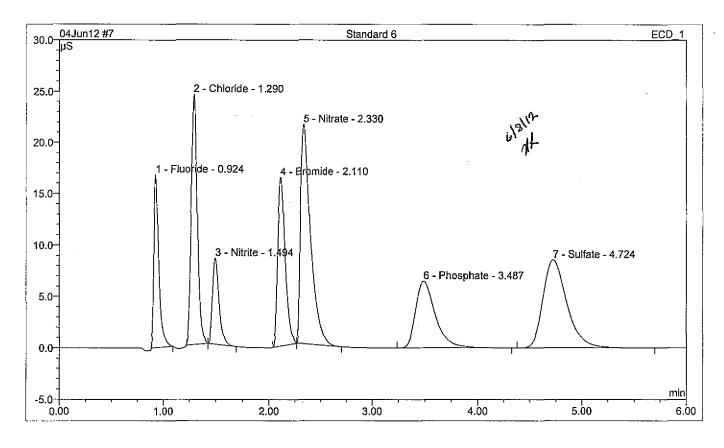
3 Standard	2		
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS
Sample Name:	Standard 2	Injection Volume:	20.0
Vial Number:	3	Channel:	ECD_1
Sample Type:	standard	Suppressor Currrent	50 mA
Control Program:	Anion Dx-500	Flow Rate:	2.00
Quantif. Method:	ANION TEST-new	Dilution Factor:	1.0000
Recording Time:	6/4/2012 11:00	Sequence;	04Jun12
Run Time (min):	6.00	Column	AS4A


No.	Ret.Time	Peak Name	Amount	Area	Height	Reported Value
	min		ppm	μS*min _	μS	ppm
1	0.93	Fluoride	0.1877	0.04912	0.62769	✓
2	1.28	Chloride	0.4865	0.04342	0.66065	\[\qq
3	1.49_	Nitrite	0.1010	0.01801	0.25177	
4 _	2.14	Bromide	1.0078	0.03801	0.42401	V
5 _	2.42	Nitrate	0.3058	0.06672	0.63027	
6	3.53	Phosphate	0.4884	0.04267	0.18378	
7	4.76	Sulfate	0.9931	0.06794	0.25255	▼

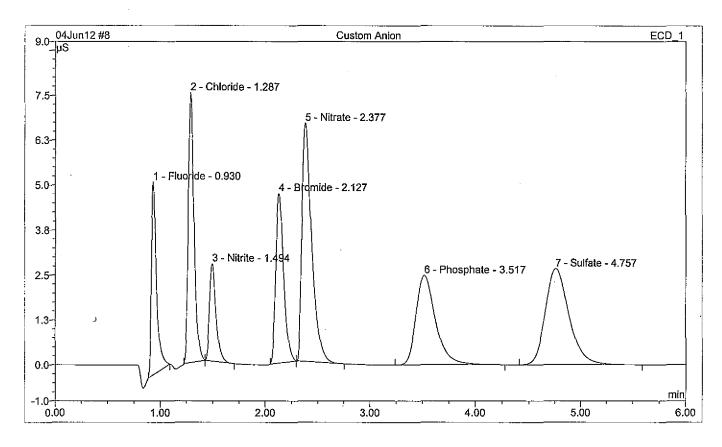
4 Standard	3		·
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS
Sample Name:	Standard 3	Injection Volume:	20.0
Vial Number:	4	Channel:	ECD 1
Sample Type:	standard	Suppressor Currrent	50 mA
Control Program:	Anion Dx-500	Flow Rate:	2.00
Quantif. Method:	ANION TEST-new	Dilution Factor:	1.0000
Recording Time:	6/4/2012 11:09	Sequence;	04Jun12
Run Time (min):	6.00	Column	AS4A


No.	Ret.Time	Peak Name	Amount	Area	Height	Reported Value
	min		ppm	μS*min	jiS	_ppm
1	0.93	Fluoride	0.4091	0.07976	1.15726	✓
_ 2	1.29	Chloride	1.0172	0.09163	1.41625	✓
3	1.49	Nitrite	0.1978	0.03594	0.50066	
4	2.14	Bromide	1.9866	0.07669	0.85831	✓
5	2.42	Nitrate	0.5898	0.13207	1.25082	
6	3.53	Phosphate	0.9872	0.08405	0.37097	
7	4,77	Sulfate	2.0283	0.13953	0.51073	√

5 Standard	4	•	
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS
Sample Name:	Standard 4	Injection Volume:	20.0
Vial Number:	5	Channel:	ECD_1
Sample Type:	standard	Suppressor Currrent	50 mA
Control Program:	Anion Dx-500	Flow Rate:	2.00
Quantif, Method:	ANION TEST-new	Dilution Factor:	1.0000
Recording Time:	6/4/2012 11:17	Sequence;	04Jun12
Run Time (min):	6.00	Column	AS4A


No.	Ret.Time	Peak Name	Amount	Area	Height	Reported Value
	min	<u> </u>	ppm	μS*min	μS	ppm
1	0.93	Fluoride	1.0000	0.16267	2,67671	V
2	1.29	Chloride	2.5160	0.23173	3,62492	V
3	1.49	Nitrite	0.4945	0.09162	1.28153	
4	2.14	Bromide	4.9453	0.19621	2,21822	\ <u>\</u>
5	2.40	Nitrate	1.4811	0.34208	3,20556	
6	3.53	Phosphate	2.4826	0.21040	0.95118	
7	4.76	Sulfate	4.9756	0.34639	1.29187	

6 Standard	5		
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS
Sample Name:	Standard 5	Injection Volume:	20.0
Vial Number:	6	Channel:	ECD_1
Sample Type:	standard	Suppressor Currrent	50 mA
Control Program:	Anion Dx-500	Flow Rate:	2.00
Quantif. Method:	ANION TEST-new	Dilution Factor:	1.0000
Recording Time:	6/4/2012 11:26	Sequence;	04Jun12
Run Time (min):	6.00	Column	AS4A


No.	Ret.Time	Peak Name	Amount	Area	Height	Reported Value
	<u> min</u>		ppm	μS*min	μS	ppm
1	0.93	Fluoride	1.9990	0.30650	5.39021	V
2	1.29	Chloride	4.9886	0.47565	7.50874	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
3	1.49	Nitrite	1.0035	0.18951	2.65371	
4	2.13	Bromide	10.0329	0.41088	4.72446	✓
5	2.38	Nitrate	3.0122	0.72041	6.67857	
6	3.52	Phosphate	5.0133	0.43212	1.98136	
7	4.76	Sulfate	10.0085	0.71005	2.65489	

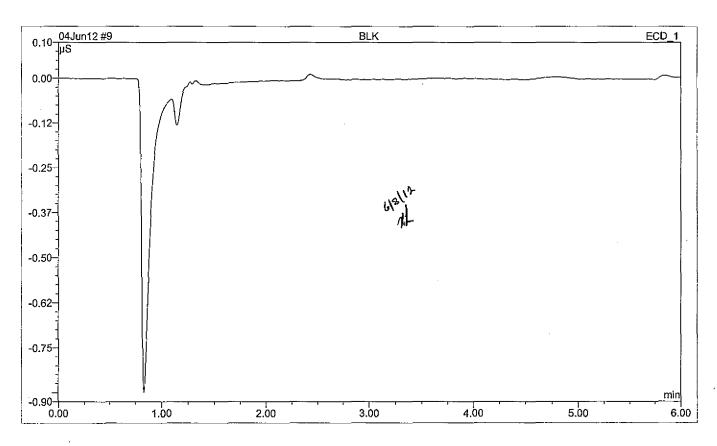
7 Standard	6		
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS
Sample Name:	Standard 6	Injection Volume:	20.0
Vial Number:	7	Channel:	ECD_1
Sample Type:	standard	Suppressor Currrent	50 mA
Control Program:	Anion Dx-500	Flow Rate:	2.00
Quantif. Method:	ANION TEST-new	Dilution Factor:	1.0000
Recording Time:	6/4/2012 11:34	Sequence;	04Jun12
Run Time (min):	6.00	Column	AS4A

No.	Ret.Time	Peak Name	Amount	Area	Height	Reported Value
	min		ppm	μS*min	μS	ppm
1	0.92	Fluoride	6.0001	0.92908	16.79795	✓
2	1.29	Chloride	15.0006	1.62612	24.39404	✓
3	1.49	Nitrite	2.9998	0.60285	8.39517	
4	2.11	Bromide	29.9982	1.36519	16.41147	✓
5	2.33	Nitrate	8.9993	2.41269	21.35008	
6	3.49	Phosphate	14.9992	1.40371	6.49201	
7	4.72	Sulfate	29.9996	2.28451	8.56679	/

8 Custom A	Anion		
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS
Sample Name:	Custom Anion	Injection Volume:	20.0
Vial Number:	8	Channel:	ECD_1
Sample Type:	unknown	Suppressor Currrent	50 mA
Control Program:	Anion Dx-500	Flow Rate:	2.00
Quantif. Method:	ANION TEST-new	Dilution Factor:	1.0000
Recording Time:	6/4/2012 11:43	Sequence;	04Jun12
Run Time (min):	6.00	Column	AS4A

No.	Ret.Time	Peak Name	Amount	Area	Height	Reported Value
	nin		ppm	μS*min	μS	ppm
1	0.93	Fluoride	1.9746	0.30294	5.37028	(1.92)
2	1,29	Chloride	4.9988	0.47669	7.51393	(5.05) /
3	1.49	Nitrite	1.0255	0.19381	2.71345	1.03
4	2.13	Bromide	9.9962	0.40929	4.71768	(10.0)
5	2.38	Nitrate	2.9908	0.71496	6.63427	3.99
6	3.52	Phosphate	6.1765	0.53735	2.48663	6-18
7	4.76	Sulfate	10.0838	0.71560	2.67158	(00) 10.1 1/k

default-revised-anions/Integration-New


Custom Anion Data Tabulation

WO1205011 Dimock Residential Groundwater

Peak Name	Amount	True Value	% Recovery	95% CI
Fluoride	1.9746	2.00	99 🖍	1. <u>90</u> -2.10
Chloride	4.9988	5.00	100 🗸	4.50-5.50
Nitrite	1.0255	1.00	103	0.900-1.10
Bromide	9.9962	10.00	100 ノ	9.00-11.0
Nitrate	2.9908	3.00	100	2.70-3.30
Phosphate	6.1765	6.20	100	5.58-6.82
Sulfate	10.0838	10.0	101 🗸	13.5-16.5

6/2/1/2


9 BLK			
WQ1205011	Dimock Residential Groundwater	Suppressor:	SRS
Sample Name:	BLK	Injection Volume:	20.0
Vial Number:	9	Channel:	ECD_1
Sample Type:	unknown	Suppressor Currrent	50 mA
Control Program:	Anion Dx-500	Flow Rate:	2.00
Quantif. Method:	ANION TEST-new	Dilution Factor:	1.0000
Recording Time:	6/4/2012 11:51	Sequence;	04Jun12
Run Time (min):	6.00	Column	AS4A

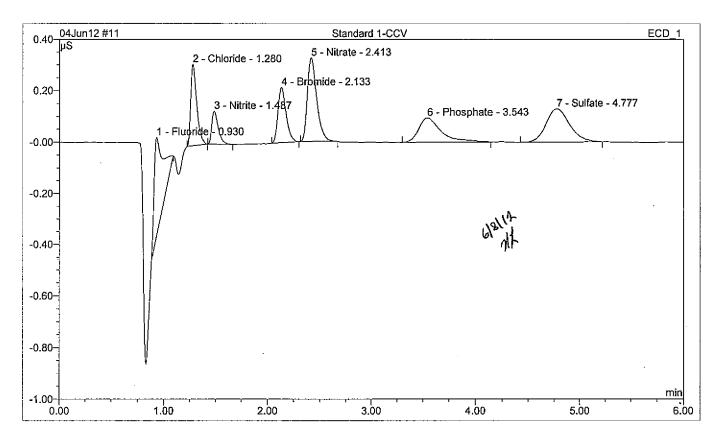
No.	Ret.Time min	Peak Name	Amount ppm	Area µS*min	Height µS	Reported Value ppm
Fluorida	-<0.10 pt2	/		•		
Nithite	-60.026h	1				
D'strate	- 20.15 pm					
bhospha .	-6.20 ppn	/				

default-revised-anions/Integration-New

10 BS			
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS
Sample Name:	BS	Injection Volume:	20.0
Vial Number:	10	Channel:	ECD_1
Sample Type:	unknown	Suppressor Currrent	50 mA
Control Program:	Anion Dx-500	Flow Rate:	2.00
Quantif. Method:	ANION TEST-new	Dilution Factor:	1.0000
Recording Time:	6/4/2012 11:59	Sequence;	04Jun12
Run Time (min):	6.00	Column	AS4A

No.	Ret.Time	Peak Name	Amount	Area	Height	Reported Value
	min		ppm	μS*min	μS	ppm
1	0.93	Fluoride	2.0065	0.30760	5.40297	(Q.e.C)
2	1.29	Chloride	5.0111	0.47795	7.53362	(5.01)
3	1.49	Nitrite	1.0049	0.18977	2.65971	1.00
4	2.13	Bromide	10.0462	0.41146	4.73850	(00)V
5	2.37	Nitrate	3.0172	0.72167	6.70769	(3 U)
6	3.52	Phosphate	5.0120	0.43199	1.98379	4:01
7	4.76	Sulfate	10.0739	0.71487	2.66611	(101)/

See next page for date tobulgtie


default-revised-anions/Integration-New

BS Data CompilationWO1205011 Dimock Residential Groundwater

Peak Name	Amount	Area	%C	%A	95% CI
	mg/L				
Fluoride	2.0065	0.3076	100	(100)	1.80-2.20
Chloride	5.0111	0.4779	100	(100) 🗸	1.80-2.20
Nitrite	1.0049	0.1898	100	100	1.80-2.20
Bromide	10.0462	0.4115	100	(100) V	1.80-2.20
Nitrate	3.0172	0.7217	101	100	2.70-3.30
Phosphate	5.0120	0.4320	100	100	4.50-5.50
Sulfate	10.0739	0.7149	101	(101)	9.00-11.0

default-revised-anions/BS

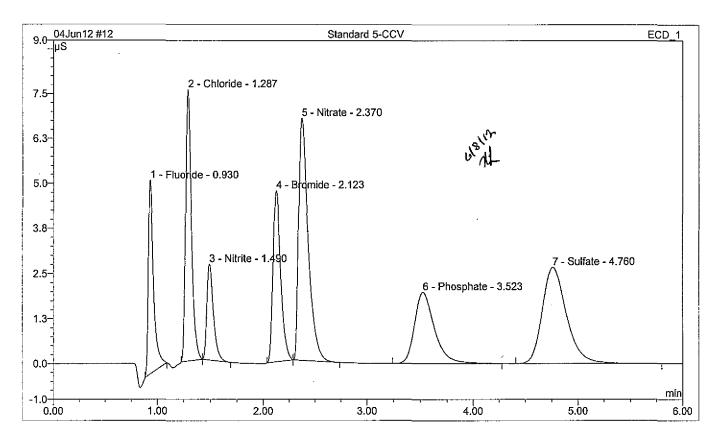
11 Standard 1-CCV							
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS				
Sample Name:	Standard 1-CCV	Injection Volume:	20.0				
Vial Number:	11	Channel:	ECD_1				
Sample Type:	unknown	Suppressor Currrent	50 mA				
Control Program:	Anion Dx-500	Flow Rate:	2.00				
Quantif. Method:	ANION TEST-new	Dilution Factor:	1.0000				
Recording Time:	6/4/2012 12:08	Sequence;	04Jun12				
Run Time (min):	6.00	Column	AS4A				

No.	Ret.Time	Peak Name	Amount	Area	Height	Reported Value
	min		ppm	μS*min	μS	ppm
1	0.93	Fluoride	0.0941	0.03624		0.0947
2	1.28	Chloride	0.2396	0.02125	0.31641	0.240 ~
3	1.49	Nitrite	0.0527	0.00910	0.12740	0.05 3
4	2.13	Bromide	0.5263	0.01914	0.21428	0.526 1
5	2.41	Nitrate	0.1607	0.03363	0.32465	0-16
6	3.54	Phosphate	0.2571	0.02361	0.09414	0357
7	4.78	Sulfate	0.5053	0.03440	0.12847	0.505

See data tabulation onnextruc

WO1205011 Dimock Residential Groundwater

Standard 1 Data Compilation For NQL Verification


Peak Name	Amount	Area	Height	%C	%A	95% CI
·	mg/L					
Fluoride	0.0941	0.0362	0.3899	94 🗸	96	0.060-0.140
Chloride	0.2396	0.0213	0.3164	96 🗸	99	0.150-0.350
Nitrite	0.0527	0.0091	0.1274	105	99 ·	0.030-0.070
Bromide	0.5263	0.0191	0.2143	105 🗸	99	0.300-0.700
Nitrate	0.1607	0.0336	0.3246	107	99	0.090-0.210
Phosphate	0.2571	0.0236	0.0941	103	93	0.150-0.350
Sulfate	0.5053	0.0344	0.1285	101 🗸	102	0.300-0.700

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR9b Build 2682 (164470)

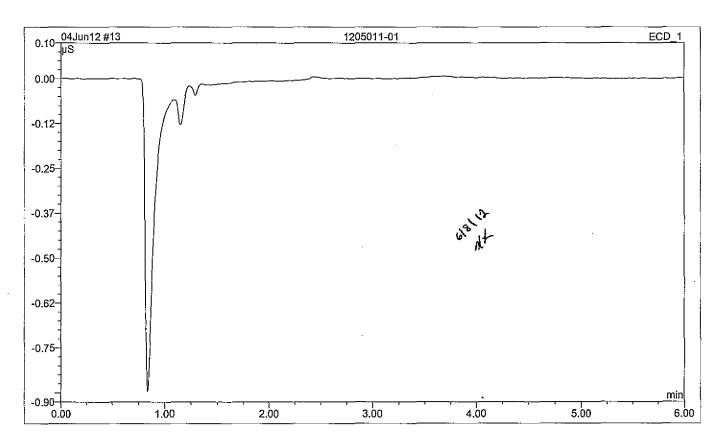
DIM0205729

12 Standard 5-CCV						
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS			
Sample Name:	Standard 5-CCV	Injection Volume:	20.0			
Vial Number:	12	Channel:	ECD_1			
Sample Type:	unkṇown	Suppressor Currrent	50 mA			
Control Program:	Anion Dx-500	Flow Rate:	2.00			
Quantif. Method:	ANION TEST-new	Dilution Factor:	1.0000			
Recording Time:	6/4/2012 12:16	Sequence;	04Jun12			
Run Time (min):	6.00	Column	AS4A			

No.	Ret.Time	Peak Name	Amount	Area	Height	Reported Value
	<u>min</u>		ppm	_μS*min	μS	ppm
1	0.93	Fluoride	2.0029	0.30708	5.38423	2.001
2	1.29	Chloride	5.0269	0.47955	7.54540	5.07 ~
3	1.49	Nitrite	1.0057	0.18993	2.65533	1.60
4	2.12	Bromide	10.0588	0.41201	4.74761	10.0 1
5	2.37	Nitrate	3.0222	0.72295	6.72489	3.01
6	3.52	Phosphate	5.0176	0.43250	1.98397	2.03
7	4.76	Sulfate	10.0700	0.71458	2.66926	101/

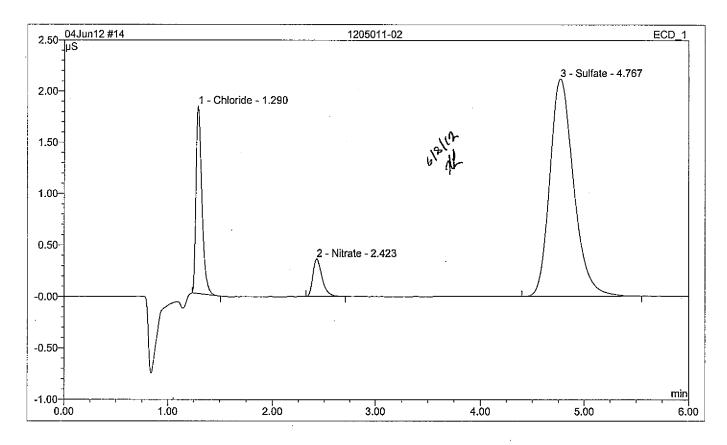
See data tabulation on next page

Standard 5 Data Compilation WO1205011 Dimock Residential Groundwater


Peak Name	Amount	Area	Height	%C	%A	95% CI
	mg/L_					
Fluoride	2.0029	0.3071	5.3842	100 ~	100	1.80-2.20
Chloride	5.0269	0.4796	7.5454	101 ~	101	4.50-5.50
Nitrite	1.0057	0.1899	2.6553	101	100	0.900-1.10
Bromide	10.0588	0.4120	4.7476	101 🗸	100	9.00-11.0
Nitrate	3.0222	0.7229	6.7249	101	100	2.70-3.30
Phosphate	5.0176	0.4325	1.9840	100	100	4.50-5.50
Sulfate	_10.0700	0.7146	2.6693	101	101	9.00-11.0

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR9b Build 2682 (164470)

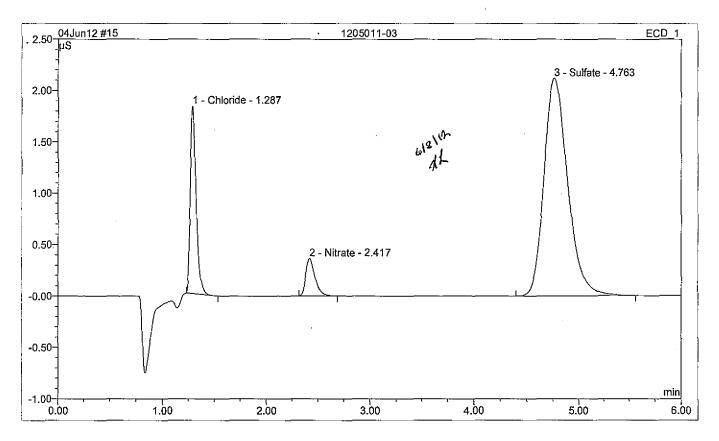
default-revised-anions/Standard 5-CS


13 1205011-	01		
WQ1205011	Dimock Residential Groundwater	Suppressor:	SRS
Sample Name:	1205011-01	Injection Volume:	20.0
Vial Number:	13	Channel:	ECD_1
Sample Type:	unknown	Suppressor Currrent	50 mA
Control Program:	Anion Dx-500	Flow Rate:	2.00
Quantif. Method:	ANION TEST-new	Dilution Factor:	1.0000
Recording Time:	6/4/2012 12:25	Sequence;	04Jun12
Run Time (min):	6.00	Column	AS4A

No.	Ret.Time min	Peak Name	Amount ppm	Area µS*min	Height μS	Reported Value ppm	
Fluoride	- (0.10)	prav					
Ch lotida Nitrite	-<0.05	מאמ					
n romide	0.15	rr~					
phosohate	-60.20 -60.31	ben l					
501 ga ga	- 60%						-

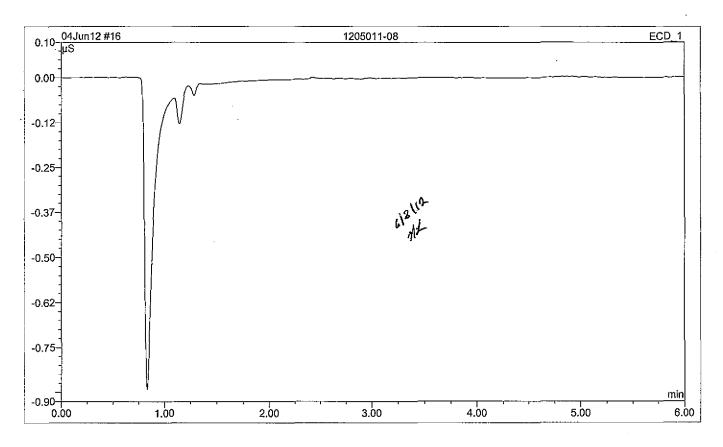
default-revised-anions/Integration-New

14 1205011-02			
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS
Sample Name:	1205011-02	Injection Volume:	20.0
Vial Number:	14	Channel:	ECD_1
Sample Type:	unknown	Suppressor Currrent	50 mA
Control Program:	Anion Dx-500	Flow Rate:	2.00
Quantif. Method:	ANION TEST-new	Dilution Factor:	1.0000
Recording Time:	6/4/2012 12:33	Sequence;	04Jun12
Run Time (min):	6.00	Column	AS4A


No.	Ret.Time	Peak Name	Amount	Area	Height	Reported Value
	min		ppm	μS <u>*</u> min	μS	ppm
1	1.29	Chloride	1.3163	0.11912	1.82449	(T.33) V
2	2.42	Nitrate	0.1785	0.03767	0.36401	
3	4.77	Sulfate	8.0324	0.56569	2.11793	(P·03) /

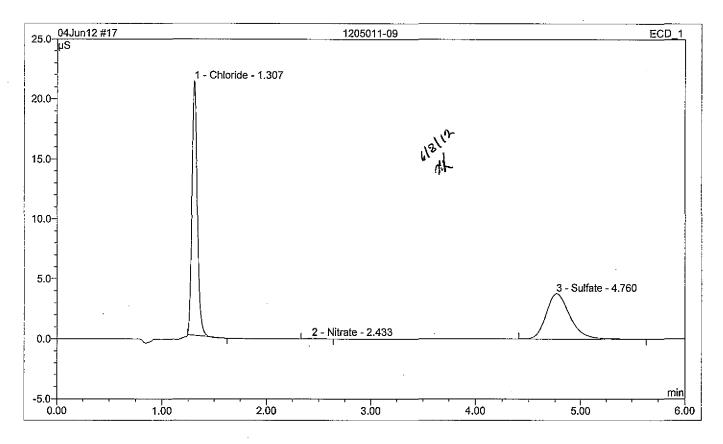
Fluorida Brom. &

60.10°V

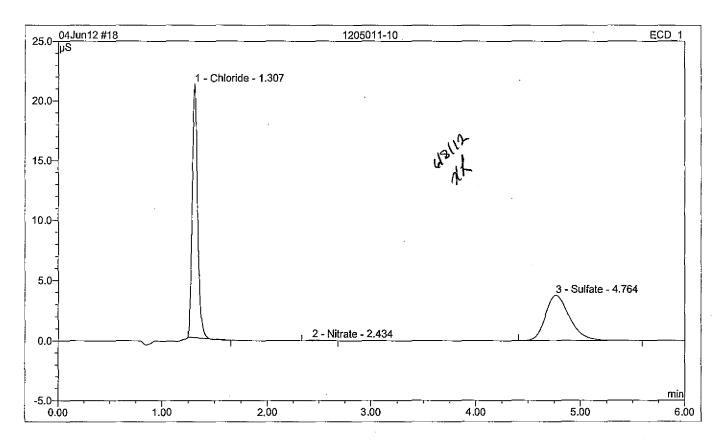

default-revised-anions/Integration-New

15 1205011-	03		
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS
Sample Name:	1205011-03	Injection Volume:	20.0
Vial Number:	15	Channel:	ECD 1
Sample Type:	unknown	Suppressor Currrent	50 mA
Control Program:	Anion Dx-500	Flow Rate:	2.00
Quantif. Method:	ANION TEST-new	Dilution Factor:	1.0000
Recording Time:	6/4/2012 12:41	Sequence;	04Jun12
Run Time (min):	6.00	Column	AS4A

No.	Ret.Time	Peak Name	Amount	Area	Height	Reported Value
	min		ppm	μS*min	μS	ppm
1	1.29	Chloride	1.3153	0.11903	1.82398	(321
2	2.42	Nitrate	0.1789	0.03777	0.36464	
3	4.76_	Sulfate	8.0459	0.56668	2.11838	18.04 V
		Elnorig				010/
		Bron: 1	اد			60.50


16 1205011-	08		
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS
Sample Name:	1205011-08	Injection Volume:	20.0
Vial Number:	16 ,	Channel:	ECD_1
Sample Type:	unknown	Suppressor Currrent	50 mA
Control Program:	Anion Dx-500	Flow Rate:	2.00
Quantif. Method:	ANION TEST-new	Dilution Factor:	1.0000
Recording Time:	6/4/2012 12:50	Sequence;	04Jun12
Run Time (min):	6.00	Column	AS4A

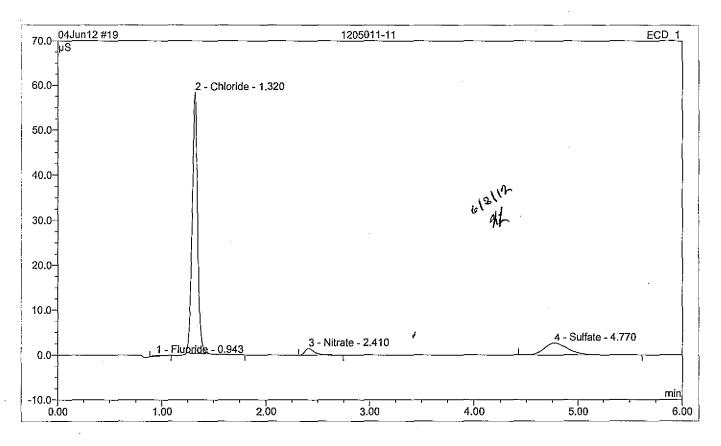
No.	Ret.Time min	Peak Name	Amount ppm	Area µS*min	Height µS	Reported Value ppm
ch lor	, dr -60.34	per v	·			
Bromit Phosphi Solfat	20.11	bu A				


default-revised-anions/Integration-New

17 1205011-0	9		
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS
Sample Name:	1205011-09	Injection Volume:	20.0
Vial Number:	17	Channel:	ECD_1
Sample Type:	unknown	Suppressor Currrent	50 mA
Control Program:	Anion Dx-500	Flow Rate:	2.00
Quantif. Method:	ANION TEST-new	Dilution Factor:	1.0000
Recording Time:	6/4/2012 12:58	Sequence;	04Jun12
Run Time (min):	6.00	Column	AS4A

No.	Ret.Time	Peak Name	Amount	Area	Height	Reported Value
	min		ppm	μS*min	μS	ppm
1	1.31	Chloride	11.8945	1.24126	21.20112	(11.9) /
2	2.43	Nitrate	0.0484	0.00815	0.08146	
3	4.76	Sulfate	13.8523	0.99666	3.75801	(13-8) V
		Bromide			•	(0.10)V

18 1205011-	10		
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS
Sample Name:	1205011-10	Injection Volume:	20.0
Vial Number:	18	Channel:	ECD_1
Sample Type:	unknown	Suppressor Currrent	50 mA
Control Program:	Anion Dx-500	Flow Rate:	2.00
Quantif. Method:	ANION TEST-new	Dilution Factor:	1.0000
Recording Time:	6/4/2012 13:07	Sequence;	04Jun12
Run Time (min):	6.00	Column	AS4A



No.	Ret.Time	Peak Name	Amount	Area	Height	Reported Value
i	min		ppm	_µS*min	μS	ppm
1	1.31	Chloride	11,8893	1.24063	21.14538	
2_	2.43	Nitrate	0.0510	0.00873	0.08387	
3	4.76	Sulfate	13.8429	0.99595	3.75606	(1/8 /

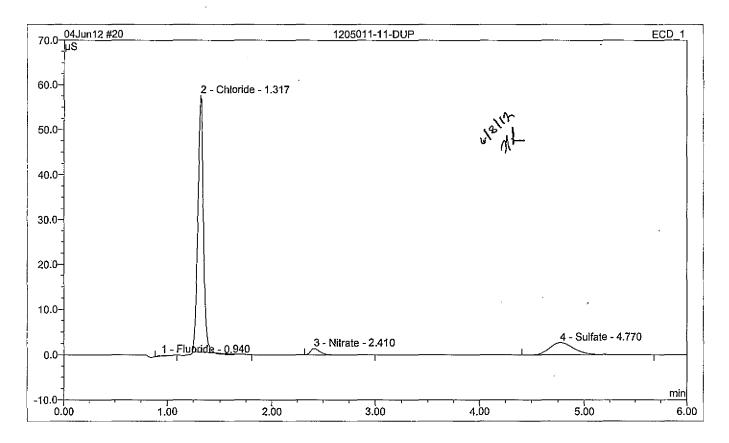
Brom.de

(0.10v

19 1205011-11		,	
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS
Sample Name:	1205011-11	Injection Volume:	20.0
Vial Number:	19	Channel:	ECD_1
Sample Type:	unknown	Suppressor Currrent	50 mA
Control Program:	Anion Dx-500	Flow Rate:	2.00
Quantif. Method:	ANION TEST-new	Dilution Factor:	1.0000
Recording Time:	6/4/2012 13:15	Sequence;	04Jun12
Run Time (min):	6.00	Column	AS4A

No.	Ret.Time	Peak Name	Amount	Area	Height	Reported Value
	min		ppm	μS*min	μS	mg q
1	0.94	Fluoride	0.0166	0.02560	0.24744	K0.19
2	1.32	Chloride	27.6775	3.45743	58.03 <u>1</u> 38	OURFSCAKE V
3	2.41	Nitrate	0.6824	0.15354	1.47311	
4	4.77	Sulfate	10.0268	0.71140	2.66677	(100 V

See pg. 23-23 for CT Firm


See pg. 23-23 for CT Firm

See pg. 23-23 for ditt tabulatur

See nixt page for ditt tabulatur

default-revised-anions/Integration-New

20 1205011-11-DUP						
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS			
Sample Name:	1205011-11-DUP	Injection Volume:	20.0			
Vial Number:	20	Channel:	ECD_1			
Sample Type:	unknown	Suppressor Currrent	50 mA			
Control Program:	Anion Dx-500	Flow Rate:	2.00			
Quantif. Method:	ANION TEST-new	Dilution Factor:	1.0000			
Recording Time:	6/4/2012 13:23	Sequence;	04Jun12			
Run Time (min):	6.00	Column	AS4A			

No.	Ret.Time	Peak Name	Amount	Area	Height	Reported Value
	min		ppm	<u>μS</u> *min	µS _	ppm
1	0.94	Fluoride	0.0098	0.02466	0.24146	E0.10, V
2	1.32	Chloride	26.9656	3.34349	57.06452	OVERSIE
3	2.41	Nitrate	0.6385	0.14334	1.36897	
4	4.77	Sulfate	9.8980	0.70193	2.63165	(g-8) V

Brom.de

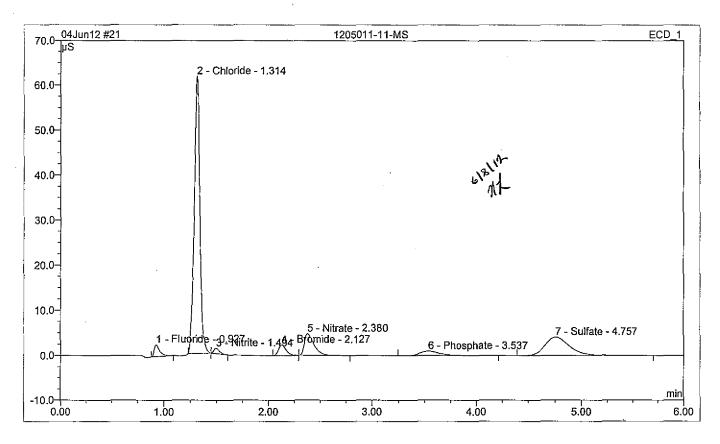
~0.50 p

See pg 24-24 for CF rerur

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR9b Build 2682 (164470)

DIM0205774

Summary Sheet for 1205011-11 WO1205011 Dimock Residential Groundwater


Anion	Sample Result	DUP	Mean Result	RPD	% Recovery
	mg/L	mg/L	mg/L		;
Fluoride	U	Ū	U	NA ·	98
Bromide	U	U	U	NA	100
Sulfate	10.0	9.9 9.89	10.0	1	98

ra oslotlic

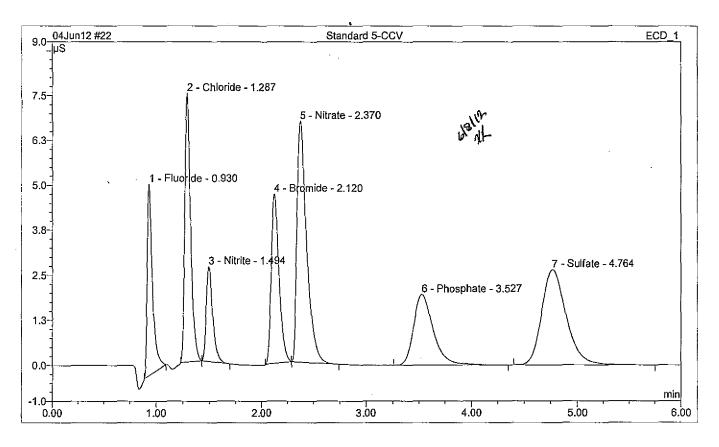
6/8/12 1/

default-revised-anions/Summary Sheet

21 1205011-11-MS						
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS			
Sample Name:	1205011-11-MS	Injection Volume:	20.0			
Vial Number:	21	Channel:	ECD_1			
Sample Type:	unknown	Suppressor Currrent	50 mA			
Control Program:	Anion Dx-500	Flow Rate:	2.00			
Quantif. Method:	ANION TEST-new	Dilution Factor:	1.0000			
Recording Time:	6/4/2012 13:32	Sequence;	04Jun12			
Run Time (min):	6.00	Column	AS4A			

No.	Ret.Time	Peak Name	Amount	Area	Height	Reported Value
	min		<u>p</u> pm	μ <u>S*</u> min	µ\$	ppm
1	0.93	Fluoride	0.9778	0.15953	2.62099	0-978
2	1.31	Chloride	29.5723	3.76712	61.49161	OVzrak
3	1.49	Nitrite	0.3916	0.07219	1.17343	
4	2.13	Bromide	5.0212	0.19933	2.30204	5-57-1
5	2.38	Nitrate	2.1452	0.50344	4.76780	
6	3.54	Phosphate	2.4984	0.21176	0.95861	
7	4.76	Sulfate	14.9380	1.07901	4.05938	(19-1 V

default-revised-anions/Integration-New


Spike Recovery Calculation for 1205011-11

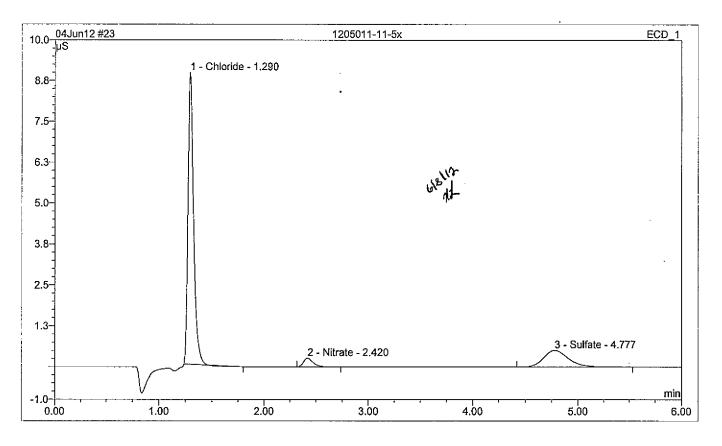
WO1205011 Dimock Residential Groundwater

Anion	Spiked Result mg/L	Reported Result mg/L	Spike Conc. mg/L	% Recovery
Fluoride	0.978 🗸	0.000	1.00	98) 🗸
Bromide	5.02 V	0.00	5.00	100 /
Sulfate	14.9 🏑	10.0	5.00	98/ /

22 Standard 5-CCV					
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS		
Sample Name:	Standard 5-CCV	Injection Volume:	20.0		
Vial Number:	22	Channel:	ECD_1		
Sample Type:	unknown	Suppressor Currrent	50 mA		
Control Program:	Anion Dx-500	Flow Rate:	2.00		
Quantif. Method:	ANION TEST-new	Dilution Factor:	1.0000		
Recording Time;	6/4/2012 13:40	Sequence;	04Jun12		
Run Time (min):	6.00	Column	AS4A		

No.	Ret.Time	Peak Name	Amount	Area	Height	Reported Value
	min		ppm	μS*min _	μS	ppm
1	0.93	Fluoride	1.9699	0.30225	5.32519	(T.32) V
2	1.29	Chloride	4.9852	0.47531	7.47803	Ges V
3	1.49	Nitrite	0.9948	0.18779	2.63713	0995
4	2.12	Bromide	9.9832	0.40873	4.70754	Q.D 1
5	2.37	Nitrate	3.0084	0.71943	6.70055	તું. બ
6	3.53	Phosphate	4.9521	0.42664	1.96044	4-95
7	4.76	Sulfate	10.0085	0.71005	2.65220	10.0/1

Standard 5 Data Compilation


WO1205011 Dimock Residential Groundwater

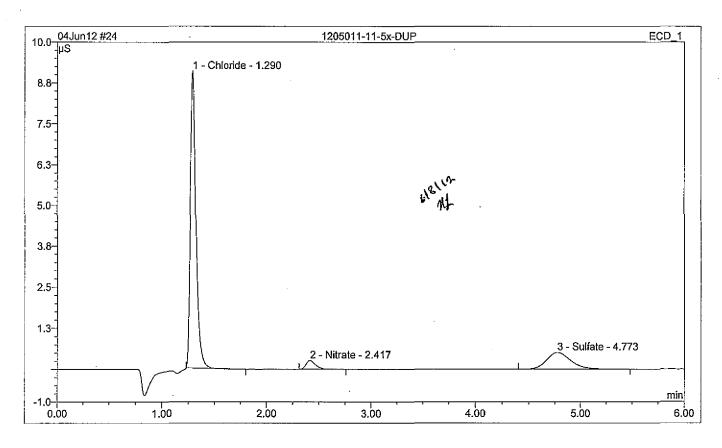
Peak Name	Amount mg/L	Area	Height	%C	%A	95% CI
Fluoride	1.9699	0.3022	5.3252	98 🇸	99	1.80-2.20
Chloride	4.9852	0.4753	7.4780	100 🗸	100	4.50-5.50
Nitrite	0.9948	0.1878	2.6371	99	99	0.900-1.10
Bromide	9,9832	0.4087	4.7075	_100 🗸	99	9.00-11.0
Nitrate	3.0084	0.7194	6.7005	100	100	2.70-3.30
Phosphate	4.9521	0.4266	1.9604	99	99	4.50-5.50
Sulfate	10.0085	0.7101	2.6522	100 🗸	100	9.00-11.0

PIBILY

default-revised-anions/Standard 5-CS

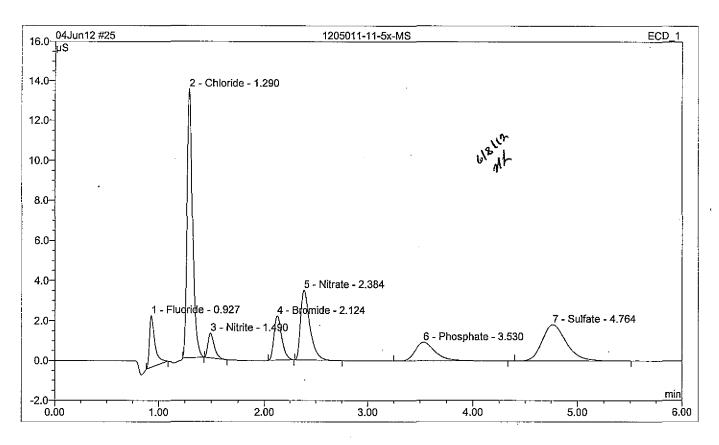
23 1205011-	11-5x		
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS
Sample Name:	1205011-11-5x	Injection Volume:	20.0
Vial Number:	23	Channel:	ECD 1
Sample Type:	unknown	Suppressor Currrent	50 mA
Control Program:	Anion Dx-500	Flow Rate:	2.00
Quantif. Method:	ANION TEST-new	Dilution Factor:	5.0000
Recording Time:	6/4/2012 14:29	Sequence;	04Jun12
Run Time (min):	6.00	Column	AS4A

No.	Ret.Time	Peak Name	Amount	Area	Height	Reported Value
	min		ppm	μS*min	μS	ppm
. 1	1.29	Chloride	28.0087	0.53860	8.92471	6891
2	2.42	Nitrate	0.6782	0.02793	·0.26552	
3	4.78	Sulfate	9.9714	0.13717	0.50603	


Summary Sheet for 1205011-11 WO1205011 Dimock Residential Groundwater

Anion	Sample Result	DUP	Mean	RPD	% Recovery
			Result		
	mg/L	mg/L	mg/L		
Chloride	28,0	28.9 —	28.5	3 ~	(103)

6/8/12

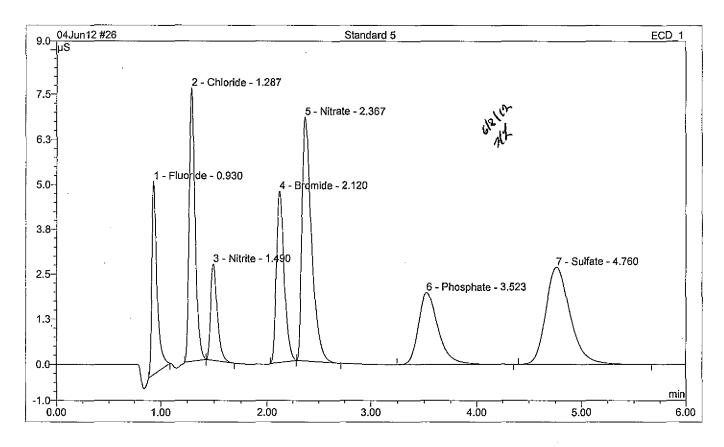

default-revised-anions/Summary Sheet

24 1205011-11-5x-DUP							
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS				
Sample Name:	1205011-11-5x-DUP	Injection Volume:	20.0				
Vial Number:	24	Channel:	ECD_1				
Sample Type:	ʻ unknown	Suppressor Currrent	50 mA				
Control Program:	Anion Dx-500	Flow Rate:	2.00				
Quantif. Method:	ANION TEST-new	Dilution Factor:	5.0000				
Recording Time:	6/4/2012 14:37	Sequence;	04Jun12				
Run Time (min):	6.00	Column	AS4A				

No.	Ret.Time	Peak Name	Amount	Area	Height	Reported Value
	min		ppm	μS*min	μS	ppm
1	1.29	Chloride	28.9267	0.55764	9.07443	(28.9)
2	2.42	Nitrate	0.6779	0.02792	0.26641	
3	4.77	Sulfate	10.0302	0.13798	0.50956	

25 1205011-11-5x-MS							
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS				
Sample Name:	1205011-11-5x-MS	Injection Volume:	20.0				
Vial Number:	25	Channel:	ECD 1				
Sample Type:	unknown	Suppressor Currrent	50 mA				
Control Program:	Anion Dx-500	Flow Rate:	2.00				
Quantif. Method:	ANION TEST-new	Dilution Factor:	5.0000				
Recording Time:	6/4/2012 14:45	Sequence;	04Jun12				
Run Time (min):	6.00	Column	AS4A				

No.	Ret.Time	Peak Name	Amount	Area	Height	Reported Value
	min		ppm	μS*min	μS	ppm
1	0.93	Fluoride	4.7955	0.15688	2.59247	
2	1.29	Chloride	40.9421	0.81494	13.45636	H0.9
3	1.49	Nitrite	2.2834	0.08446	1.24113	
4	2.12	Bromide	24.5736	0.19495	2.22581	
5	2.38	Nitrate	7.9830	0.36985	3.49161	
6	3.53	Phosphate	12.0264	0.20378	0.92924	
7	4.76	Sulfate	34.6892	0.48661	1.81807	


Spike Recovery Calculation for 1205011-11

WO1205011 Dimock Residential Groundwater

Anion	Spiked Result	Reported Result	Spike Conc.	% Recovery
	mg/L	mg/L	mg/L	
Chloride	40.9	28.0	12.5	(103)

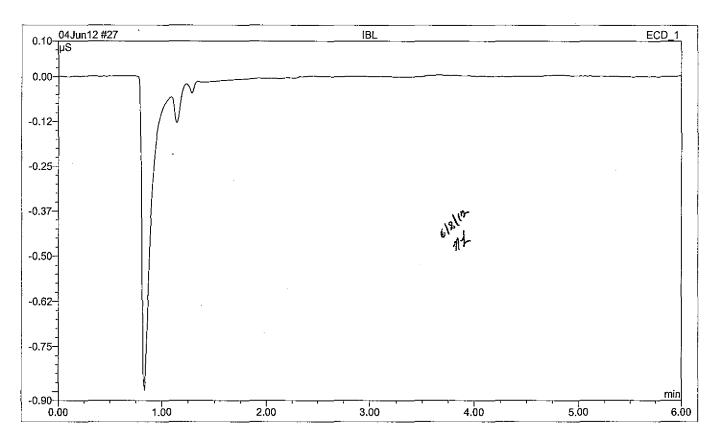
in Alli

26 Standard	5		
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS
Sample Name:	Standard 5	Injection Volume:	20.0
Vial Number:	26	Channel:	ECD_1
Sample Type:	unknown	Suppressor Currrent	50 mA
Control Program:	Anion Dx-500	Flow Rate:	2.00
Quantif. Method:	ANION TEST-new	Dilution Factor:	1.0000
Recording Time:	6/4/2012 14:54	Sequence;	04Jun12
Run Time (min):	6.00	Column	AS4A

No.	Ret.Time	Peak Name	Amount	Area	Height	Reported Value
<u>.</u>	min		ppm	μ <u>S</u> *min	μŞ	_ppm
1	0.93	Fluoride	1.9945	0.30585	5.38699	1.99 ~
2	1.29	Chloride	5.0703	0.48398	7.59952	5.07 /
3	1.49	Nitrite	1.0111	0.19098	2.67186	1.01
4	2.12	Bromide	10.1066	0.41408	4.77390	10-1
5	· 2.37	Nitrate	_3.0373	0.72680	6.77609	7.04
_ 6	3.52	Phosphate	4.9727	0.42847	1.98235	4-97
7	4.76	Sulfate	10.1381	0.71960	2,69432	10.1

See next page for data tabulation

Standard 5 Data Compilation


WO1205011 Dimock Residential Groundwater

Peak Name	Amount mg/L	Area	Height	%C	%A	95% CI
Fluoride	1.9945	0.3059	5.3870	100 🗸	100	1.80-2.20
Chloride	5.0703	0.4840	7.5995	101 ✓	102	4.50-5.50
Nitrite	1.0111	0.1910	2.6719	101	101	0.900-1.10
Bromide	10.1066	0.4141	4.7739	101 🗸	101	9.00-11.0
Nitrate	3.0373	0.7268	6.7761	101	101	2.70-3.30
Phosphate	4.9727	0.4285	1.9824	99	99	4.50-5.50
Sulfate	10.1381	0.7196	2.6943	101	101	9.00-11.0

default-revised-anions/Standard 5-CS

27 IBL			
WO1205011	Dimock Residential Groundwater	Suppressor:	SRS
Sample Name:	IBL	Injection Volume:	20.0
Vial Number:	27	Channel:	ECD_1
Sample Type:	unknown	Suppressor Currrent	50 mA
Control Program:	Anion Dx-500	Flow Rate:	2.00
Quantif. Method:	ANION TEST-new	Dilution Factor:	1.0000
Recording Time:	6/4/2012 15:11	Sequence;	04Jun12
Run Time (min):	6.00	Column	AS4A

No.	Ret.Time min	Peak Name	Amount ppm	Area μS*min	Height µS.	Reported Value ppm	
Fluo	rid < 0.10	25 PPMV					
Chlor	id	0.05000					
Nitria	/c /°	sorm /					
Brom; d	<0	.) 1 74"					
Phosph	qh -<	6.250 p1 J					
Sulfah		co.50 p1"					

default-revised-anions/Integration-New

ANIONS

CALIBRATION

DATA

Calibration Data

Sequence 04Jun12

WO1205011 Dimock Residential Groundwater

Name	InjectionTime	Ret Time	Area	Height	Amount
		min	µS*min	μS	mg/L
		Fluoride	Fluoride	Fluoride	Fluoride
		ECD_1	ECD_1	ECD_1	ECD_1
Standard 1	6/4/2012 10:52	0.93	0.038	0.406	0.1042
Standard 2	6/4/2012 11:00	0.93	0.049	0.628	0.1877
Standard 3	6/4/2012 11:09	0.93	0.080	1.157	0.4091
Standard 4	6/4/2012 11:17	0.93	0.163	2.677	1.0000
Standard 5	6/4/2012 11:26	0.93	0.307	5.390	1.9990
Standard 6	6/4/2012 11:34	0.92	0.929	16.798	6.0001

61810

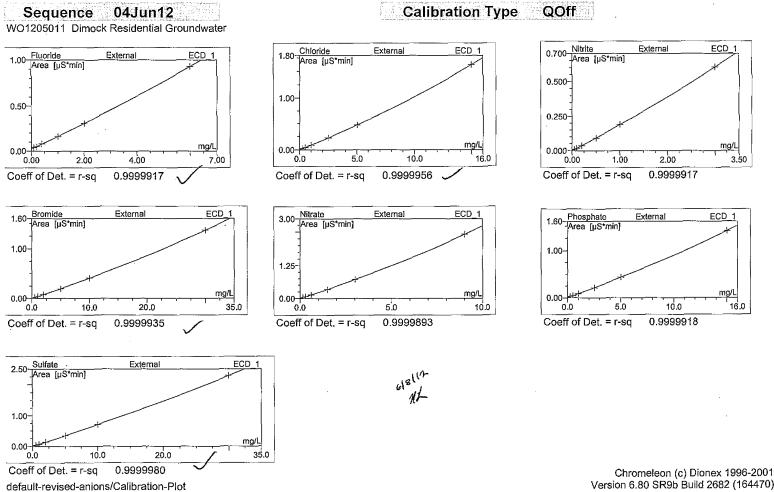
Name	InjectionTime	Ret Time	Area µS*min	Height	Amount
		min Chloride	րծ ույլո Chloride	μS Chloride	mg/L Chloride
		ECD 1	ECD_1	ECD 1	ECD 1
Standard 1	6/4/2012 10:52	1.28	0.021	0.319	0.2411
Standard 2	6/4/2012 11:00	1.28	0.043	0.661	0.4865
Standard 3	6/4/2012 11:09	1.29	0.092	1.416	1.0172
Standard 4	6/4/2012 11:17	1.29	0.232	3.625	2.5160
Standard 5	6/4/2012 11:26	1.29	0.476	7.509	4.9886 🗸
Standard 6	6/4/2012 11:34	1.29	1.626	24.394	15.0006

Name	Injection Time	Ret Time	Area	Height	Amount
		min	μS*min	η μS	mg/L
		Nitrite	Nitrite	Nitrite	Nitrite
	and the second s	ECD_1	ECD_1	ECD_1	ECD_1
Standard 1	6/4/2012 10:52	1.49	0.009	0.128	0.0534
Standard 2	6/4/2012 11:00	1.49	0.018	0.252	0.1010
Standard 3	6/4/2012 11:09	1.49	0.036	0.501	0.1978
Standard 4	6/4/2012 11:17	1.49	0.092	1.282	0.4945
Standard 5	6/4/2012 11:26	1.49	0.190	2.654	1.0035
Standard 6	6/4/2012 11:34	1.49	0.603	8.395	2.9998

Name	InjectionTime	Ret Time min Bromide	Area µS*min Bromide	Height µS Bromide ECD 1	Amount mg/L Bromide ECD 1
Standard 1	6/4/2012 10:52	ECD_1 2.15	EGD_1 0.019	0.213	0.5293
Standard 2	6/4/2012 11:00	2.14	0.038	0.424	1.0078
Standard 3	6/4/2012 11:09	2.14	0.077	0.858	1.9866
Standard 4	6/4/2012 11:17	2.14	0.196	2.218	4.9453
Standard 5	6/4/2012 11:26	2.13	0.411	4.724	10.0329 🗸
Standard 6	6/4/2012 11:34	2.11	1.365	16.411	29.9982

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR9b Build 2682 (164470)

default-revised-anions/Calibration-New


DIM0205729 DIM0205789

Name	InjectionTime	Ret Time	Area	Height	Amount
		min	μS*min	μS	mg/L
		Nitrate	Nitrate	Nitrate	Nitrate
		ECD_1	ECD_1	ECD_1	ECD_1
Standard 1	6/4/2012 10:52	2.43	0.034	0.321	0.1617
Standard 2	6/4/2012 11:00	2.42	0.067	0.630	0.3058
Standard 3	6/4/2012 11:09	2.42	0.132	1.251	0.5898
Standard 4	6/4/2012 11:17	2.40	0.342	3.206	1.4811
Standard 5	6/4/2012 11:26	2.38	0.720	6.679	3.0122
Standard 6	6/4/2012 11:34	2.33	2.413	21.350	8.9993

min µS*min µS	S mg/L
Phosphate Phosphate Phosp	Takan dang terminan salah dan dan dan berasa
ECD_1 EGD_1 EGD	_1 ECD_1
Standard 1 6/4/2012 10:52 3.54 0.025 0.10	00 0.2793
Standard 2 6/4/2012 11:00 3.53 0.043 0.18	8 4 0.4884
Standard 3 6/4/2012 11:09 3.53 0.084 0.37	71 0.9872
Standard 4 6/4/2012 11:17 3.53 0.210 0.95	51 2.4826
Standard 5 6/4/2012 11:26 3.52 0.432 1.98	5.0133
Standard 6 6/4/2012 11:34 3.49 1.404 6.49	92 14.9992

Name	InjectionTime	Ret Time	Area	Height	Amount
		min	µS*min	μS	mg/L
		Sulfate	Sulfate	Sulfate	Sulfate
		ECD_1	ECD_1	ECD_1	ECD_1
Standard 1	6/4/2012 10:52	4.77	0.034	0.128	0.4948
Standard 2	6/4/2012 11:00	4.76	0.068	0.253	0.9931
Standard 3	6/4/2012 11:09	4.77	0.140	0.511	2.0283
Standard 4	6/4/2012 11:17	4.76	0.346	1.292	4.9756
Standard 5	6/4/2012 11:26	4.76	0.710	2.655	10.0085 🗸
Standard 6	6/4/2012 11:34	4.72	2.285	8.567	29,9996

CALIBRATION PLOTS

Version 6.80 SR9b Build 2682 (164470)

Anions

Sample and

Reagent

Preparation

Logsheets

DIM0205729 DIM0205792

Anions Standard Preparation Log for DX500 PNB21

Page No. 225

WO No. 12050 1 Site Name GROUD MATTER Date 66/04 Method 300.0

Program SUPERS Analyst RON ALT MAN Reviewer SOP R3-QA108

Balance Log No. SNB23 Pipet Calibration Log No. SNB22 Certificate of Analysis Log No. SNB 20

ID	Standard	Source	Lot No.	CHI M	Theoretical Weight/ Volume	Actual Weight/ Volume	Date Prepared	Expiration Date	Comments
Stock Mixed Anion	all of the anions below/1L	- 1					05/3/1/2	07/01/12	
F .	NaF	Fisher	880369	0607	0.4420 g	0-44329			
Cl	NaCl	Fisher	G25729	0214	0.8242 g	0.92519			
NO ₂	NaNO ₂	Fisher	916644A	0734	0.4926 g	CP + 2 + - 0			
Br	KBr	Sigma	120K0047	4830	1.4892 g	1-49005			
NO ₃	KNO ₃	Fisher	916724	0693	2.1660 g	2.16899			
PO ₄ -3	KH₂PO ₄	Fisher	915430	0733	2.1968 g	2.19959	<i>p</i>		
SO ₄ -2	Na ₂ SO ₄	Fisher	854742	0695	1.4790 g	1.40009	4	4	<u> </u>
Standard 1	Stock Mixed Anion	Above	1		50 μL of stock	Souc	00104/12	preparty	
Standard 2	Stock Mixed Anion	Above			100 μL of stock	100 00)	1	
Standard 3	Stock Mixed Anion	Above			200 μL of stock	300 m			
Standard 4	Stock Mixed Anion	Above			500 μL of stock	500W	1		
Standard 5	Stock Mixed Anion	Above		1	1000 μL of stock	1000 20			
Standard 6	Stock Mixed Anion	Above	Ú	J	3000 μL of stock	3000 Wi			
Custom Anion	Custom Anion	Wibby	B20120043	NE	1000 uL of SRM	1000 ul	Ū,	4	

Anions Reagent Preparation Log for DX500 PNB21

Page No. 22 %

WO No. 1205011 Site Name GROUNOWATER Date OCIOYIR Method 300.0 Program SURGAND Analyst Reviewer Reviewer SOP R3-QA108 Balance Log No. SNB23 Pipet Calibration Log No. SNB22 Certificate of Analysis Log No. SNB 20

ID	Reagent	Source	Lot No.	СНІМ	Theoretical Weight/ Volume	Actual Weight/ Volume	Date Prepared	Expiration Date	Comments
Eluent	Na ₂ CO ₃	Fisher	C38088	0212	0.382 g +	6.39239	0513.1112	67/6//2	
	NaHCO ₃	Fisher	C49336	0192	0.286g/2 L	6-2877)	J	L	
		, , , , , , , , , , , , , , , , , , , ,							
					· .			,	
									·
<u> </u>									

Reagent Purity Checked (Y/N)
Resistivity of Milli-Q Water (Y/N)
Milli-Q Maintenance Log No. SNB32

DIM0205729

Anions Sample Preparation Log PNB95

Sample ID	Tag No.	Sample pH	Sample Filtered	Sample Dilution	Comments
BLK	NA	<u>~</u> ^	Ņ	2000	
BS]				
1202011-01	~ ^				
1302a11-03					
1502011-02					
1205011 -08					
1201-11-09					
1205011 -10					
12050N-11					
1502011-11 Day					
1205011-11-201					
1245011-11-5X				2.0 M C/ 1 OAL	
1245-11-17-5%					
Busch-1-1x			4		

DIM0205729

DIM0205729 DIM0205797

Certificates

of

Analyses

Dimock

6390 Joyce Drive

#100 Golden, CO 80403

PHONE 303-940-0033 FAX 303-940-0043 www.wibby.com

ustom Ani	ons	Lot #B20120043	
NELAC Analyte Code	Analyte	Certified Value mg/L	
2000	Sulfate	1000	
1540	Bromide	1000	
1870	Phosphate as P	620	
1575	Chloride	500	
1810	Nitrate as N	. 300	
1730	Fluoride	200	
1840	Nitrite as N	· 100	

Certified Values = "100% true concentration" of each analyte as determined from gravimetric and volumetric measurements made during standard manufacture.

Solvent = Deionized Water

Expiration Date: 02/13

Analyte Source: NaBr

Store at 4°C.

NaCl NaF KNO₃ NaNO₂ Na₂SO₄ Na2HPO4

Prepared by:

AWK

Reviewed By:

Date:

01/12

Date: 01/12

THG

DIM0205729 DIM0205799

On-Demand Data Checklist For NITRATE (NO₃) AND NITRITE (NO₂) AS N

 $NO_2 \square NO_3 \square NO_2 + NO_3 \boxtimes$ Technical Review Checklist (TRC)

For Internal Use Only

Program (circle):	Dimock Residential Groundwater WC	ate given to Reviewe	SWER - Emergency Response
samples were and These protocols i performance of the the EPA Region I reference must be	equest which falls outside OASQA's relyzed and the quality control (QC) was notude all the QC checks as per routine an analytical method at the reported quality Manual available for the method being performs unique, the procedures must be fully on the second second control of the method being performs unique, the procedures must be fully on the second control of the secon	s evaluated based on e analyses plus specia antitation limit/s. The l, current version. A med and referenced i	the "On Demand" criteria. al verification of the lese protocols are specified in written procedure or
 This data meets the The analysis was pe All documentation r Data Review status Peer Reviewer sign	relow indicates the following: needs of the customer according to the request. rformed as per the indicated Method, or exception seeded to recreate the analyses has been reviewed set to Peer Reviewed in Element. The set is stored with another case file, give Site Name	ed Date acco	epted 6/1/12
Peer Reviewer C	Completes Section Below:		
General:	with sample IDs, site name,	YES NO 1	N/A Comments
All logbooks complet	ed, reviewed and copies present in report?		· .
Copies of certificates	present for standards?		
Ouality Control: Raw data present; inc corrections factors for	luding dilution factors, units, and solids?		· · · · · · · · · · · · · · · · · · ·
All requested samples	s reported & DQO's met?		·
unpreserved or 28 day	ed within the 48 hour holding time for ys preserved?	ne heads gheet -	ZBench sheet sons 26°C
	,		· _neca_incoming report
Sample results within	ples preserved with acid? calibration range?		

Page 1 of 2

DIM0205729 DIM0205800

Calibration Curve: Correlation Coefficient ≥ 0.995?	
Are points from the curve omitted following the instrument Calibration Evaluation Policy?	
Column Check ±20 % of TV= 3.0 mg/L	
CCV: Recovery ±10% of corresponding CLM conc.?	_/
BLK: < Reporting Limit?	
Secondary Source (High) BS: Recovery 85 - 115%?	
Secondary Source (Low) LCV/BS: Recovery 70 - 130%?	
MS: Recovery 85 - 115%?	<u></u>
DUP: RPD ≤20%?	
Calculations/Report: At least 10% Calculations and transcriptions checked.	
Element Draft Report reviewed.	
Deviations and problems documented.	<u> </u>
Additional Comments by Peer Reviewer:	
	·
,	
Analyst Ensures that the Data Case File is Complet	e and Accurate:
Bench sheet or Work Order list Sample Prep logs Instrument run log Standard/Reagent Prep log	Appropriate TV sheets / Certificates of Analysis Element Peer Review report Raw data Data status set to analyzed
Additional Comments by Analyst on data issues:	
I:\ASQAB_AT Team\Checklists\Phenol TRC 2008.doc	Oct 2010

Page 2 of 2

Report Narrative

SVOAs Analysis Note:

All samples were extracted by EPA SW-846 Method 3520C followed by analysis using EPA SW-846 Method 8270D. Refer to notes in case file for additional information regarding the analysis.

For this project one additional compound is added to the SVOC analysis; 1-methylnaphthalene. This is a non-routine analysis. All current in-house quality control limits were met.

For all samples, quantitation limits for 2,4-dinitrophenol are rejected qualifed "R" due to zero percent recovery in the low-spike quality control check (BS1) and less than 10% recovery in the mid-level spike quality control check (BS2). For all samples 4,6-dinitro-2-methylphenol and pentachlorophenol had less than 10% recovery in the low-spike quality control check (BS1) but within acceptance limits in the mid-level spike quality control check (BS2); therefore, quantitation limits are raised to the mid-level value. In the report, only 21 compounds are reported for blank spike quality control check samples. Quality control information about the additional spiked compounds is available in the case file.

Results for a limited number of compounds found in all samples have been qualified "B" because of contamination found in either the method blank, field blank, or equipment blank.

Glycols by HPLC/MS/MS Note:

Samples were analyzed for diethylene glycol (DiG) (CAS# 111-46-6), triethylene glycol (TriG) (112-27-6), tetraethylene glycol (TeG) (112-60-7), 2-butoxyethanol (2-Bu) (111-76-2) and 2-methoxyethanol (2-Me)(109-86-4) by HPLC/MS/MS (inst id: TQD-LCMSMS) on a Waters Atlantis dC18 3um 2.1 x 150mm column (s/n-0141301481).

An HPLC/MS/MS method does not currently exist for these analytes. SOP R3QA239 is in preparation. ASTM D 7731-11 and EPA SW-846 Methods 8000C and 8321 were followed for method development and QA/QC limits where applicable. All applicable OASQA On Demand QA/QC protocols were followed. All QC were within criteria. The aqueous samples were injected without extraction onto the HPLC/MS/MS system.

Refer to notes in the case file for additional information regarding the analysis.

Nitrite/Nitrate Analysis Note:

Samples were run as an 'On-Demand' analysis..

Total Nitrogen Analysis Note:

Samples were run as an 'On-Demand' analysis...

1205011 DRAFT 06 04 12 1429 Page 1 of 8

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Site Name: Dimock Residential Groundwater

Project #: DAS R33989

ANALYTICAL REPORT FOR SAMPLES

Station ID	Laboratory ID	Matrix	Date Sampled	Date Received		
FB22	1205011-01	Water	05/22/12 11:58	05/23/12 12:22		
HW64	1205011-02	Drinking Water	05/22/12 11:10	05/23/12 12:22		
HW64-P	1205011-03	Drinking Water	05/22/12 11:40	05/23/12 12:22		
FB23	1205011-08	Water	05/23/12 13:25	05/24/12 11:53		
HW63z	1205011-09	Drinking Water	05/23/12 13:10	05/24/12 11:53		
HW63	1205011-10	Drinking Water	05/23/12 13:09	05/24/12 11:53		
HW62	1205011-11	Drinking Water	05/22/12 15:59	05/24/12 11:53		

1205011 DRAFT 06 04 12 1429

Page 2 of 8

Region 3 Environmental Science Center // Office of Analytical Services and Quality Assurance 701 Mapes Road Fort Meade, Maryland 20755-5350

Site Name:

Dimock Residential Groundwater

Project #: DAS R33989

Classical Chemistry Parameters

Flags/ Quantitation Analyte Result Units Prepared Analyzed Qualifiers Limit Dilution Method/SOP#

Lab ID:

1205011-01

Station ID:

FB22

Sample Matrix: Collected:

Water 05/22/2012

Nitrite + Nitrate as N

U

0.050

mg/L

05/31/12 05/31/12 16:27 :

EPA 353.2

Classical Chemistry Parameters

Flags/ Quantitation Result Analyte Qualifiers Limit Units Dilution Prepared Analyzed Method/SOP#

Lab ID:

1205011-02

Station ID:

HW64

Sample Matrix:

Drinking Water

Collected:

05/22/2012

Nitrite + Nitrate as N

0.159

0.050

mg/L

05/31/12 05/31/12 16:28

EPA 353.2

Classical Chemistry Parameters

Flags/ Quantitation Analyte Result Qualifiers Limit Units Dilution Prepared Analyzed Method/SOP# Lab ID: 1205011-03 Station ID: HW64-P

Sample Matrix:

Drinking Water

Collected:

05/22/2012

Nitrite + Nitrate as N

0.161

0.050

mg/L

05/31/12 05/31/12 16:30

EPA 353.2

1205011 DRAFT 06 04 12 1429

Page 3 of 8

DIM0205729

DIM0205804

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Site Name: Dimock Residential Groundwater

Project #: DAS R33989

Classical Chemistry Parameters

Flags/ Quantitation Analyte Result Qualifiers Limit Units Prepared Analyzed Method/SOP# Dilution 1205011-08 Lab ID: Station ID: FB23 Sample Matrix: Water 05/23/2012 Collected: Nitrite + Nitrate as N U 0.050 05/31/12 05/31/12 16:33 EPA 353.2 mg/L

Classical Chemistry. Parameters

Analyte		Result	Flags/ Qualifiers	Quantitation Limit	Units	Dilution	Prepared	Analyzed	Method/SOP#
Lab ID: Station ID: Sample Matrix: Collected:	1205011-09 HW63z Drinking Water 05/23/2012								
Nitrite + Nitrate as	N	U		0.050	mg/L	1	05/31/12	05/31/12 16:34	EPA 353.2

Classical Chemistry Parameters

Analyte		Result	Flags/ Qualifiers	Quantitation Limit	Units	Dilution	Prepared	Analyzed	Method/SOP#
Lab ID: Station ID: Sample Matrix: Collected:	1205011-10 HW63 Drinking Water 05/23/2012								
Nitrite + Nitrate as	· · N	U		0.050	mg/L	1	05/31/12	05/31/12 16:35	EPA 353.2

1205011 DRAFT 06 04 12 1429 Page 4 of 8

.....

Nitrite + Nitrate as N

Region 3 Environmental Science Center Office of Analytical Services and Quality Assurance 701 Mapes Road Fort Meade, Maryland 20755-5350

Site Name: Dimock Residential Groundwater

0.627

Project #: DAS R33989

Classical Chemistry Parameters

Flags/ Quantitation Analyte Result Qualifiers Limit Prepared Analyzed Units Method/SOP# Dilution Lab ID: 1205011-11 Station ID: HW62 Sample Matrix: **Drinking Water** Collected: 05/22/2012 0.050 05/31/12 05/31/12 16:36 EPA 353.2

mg/L

1205011 DRAFT 06 04 12 1429 Page 5 of 8

DIM0205806 DIM0205729

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Site Name: Dimock Residential Groundwater

Project #: DAS R33989

QC Data Classical Chemistry Parameters

Analyte	Result	Quantitation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch BE23101 - Nutrient Prep										
Blank (BE23101-BLK1)				Prepared:	05/31/12	11:02	Analyzed:	05/31/12	16:22	
Nitrite + Nitrate as N	Ü	0.050	mg/L							
LCS (BE23101-BS1)	,			Prepared:	05/31/12	11:02	Analyzed:	05/31/12	16:24	
Nitrite + Nitrate as N	3.095	0.050	mg/L	3.0000		103	85-115			
Duplicate (BE23101-DUP1)	Sour	rce: 120501	1-02	Prepared:	05/31/12	11:02	Analyzed:	05/31/12	16:29	
Nitrite + Nitrate as N	0.165	0.050	mg/L		0.159			4	20	<u></u>
MRL Check (BE23101-MRL1)				Prepared:	05/31/12	11:02	Analyzed:	05/31/12	16:26	
Nitrite + Nitrate as N	0.053	0.050	mg/L	0.050000		106	60-140			
Matrix Spike (BE23101-MS1)	Soui	ce: 120501	1-03	Prepared:	05/31/12	11:02	Analyzed:	05/31/12	16:32	
Nitrite + Nitrate as N	1.197	0.050	mg/L	1.0000	0.161	104	85-115	-	-	

1205011 DRAFT 06 04 12 1429

Page 6 of 8

Region 3 Environmental Science Center Office of Analytical Services and Quality Assurance 701 Mapes Road Fort Meade, Maryland 20755-5350

Site Name:

Dimock Residential Groundwater

Project #: DAS R33989

Notes and Definitions

%REC Percent Recovery

RPD Relative Percent Difference

U Analyte included in the analysis, but not detected at or above the quantitation limit.

Quantitation Limit: The lowest concentration of an analyte that can be reliably measured within specified limits of precision and accuracy for a specific laboratory analytical method and that takes into account analytical adjustments made during sample preparation and analysis.

REPORTING PROTOCOL FOR SOLID SAMPLE RESULTS: Percent Solids (percent dry wt at 105 degrees C) determinations are routinely performed for most organic and inorganic analyses. Consequently, these samples are analyzed wet and converted to a dry weight result for reporting purposes. If metals and mercury analyses are requested, they are routinely prepared for analyses by an initial drying at 60 degrees C, homogenized prior to digestion, and are analyzed and reported on a dry weight basis. Oil-type samples are analyzed and reported on a wet weight basis for all analyses because of the nature of the sample matrix. Any exceptions to this protocol will be noted in the narrative.

> 1205011 DRAFT 06 04 12 1429 Page 7 of 8

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Items for Project Manager Review

LabNumber	Analysis	, Analyte	Exception					
	Nitrite+Nitrate as Nitr	rogen by (Water)	Special Units: (mg/L)	_				
1205011-01	Nitrite+Nitrate as Nita	Nitrite+Nitrate as Nitrogen by Status is Analyzed						
1205011-02	Nitrite+Nitrate as Nitr	ogen by	Status is Analyzed					
1205011-03	Nitrite+Nitrate as Nitr	ogen by	Status is Analyzed					
1205011-08	Nitrite+Nitrate as Nitr	ogen by	Status is Analyzed					
1205011-09	Nitrite+Nitrate as Nitr	ogen by	Status is Analyzed					
1205011-10	Nitrite+Nitrate as Nitr	ogen by	Status is Analyzed					
1205011-11	Nitrite+Nitrate as Nitr	ogen by	Status is Analyzed					

Author: John Curry Date: 5/31/2012

Original Run Filename: Original Run Author's Signature: Current Run Filename: Current Run Author's Signature:

OM_5-31-2012_04-14-02AM.OMN created 5/31/2012 4:14:02 AM [Administrator] OM_5-31-2012_04-14-02AM.OMN last modified 5/31/2012 4:40:28 AM [Administrator] 10-107-04-1-C

Description:

Dimock Residential Groundwater WO 1205011

			Channel 3			- TOOLY ID GOOD	ļ ———	J	Ţ	
Comple	Rep.	Cup No.	NO3 + NO2			Detection Time	ADF	MDF		
Sample	Rep.	Cup No.	Conc. (mg	Area	Height (V)	Detection Time	ADF	MIDE	İ	
			N/L)	(Vs)			ſ	1		
CLM 1	1	S1	5.0000	45.6392	4.7429	5/31/2012@4:15:00 AM				
CLM 2	1	S2	3.0000	27.9778	3.0011	5/31/2012@4:16:12 AM))	
CLM 3	1	<u>S3</u>	1.0000	9.5714	1.0362	5/31/2012@4:17:25 AM]	
CLM 4	1	S4	0.5000	4.6331	0.4974	5/31/2012@4:18:37 AM		1]	
CLM 5	1	S5	0.1000	0.9136	0.0972	5/31/2012@4:19:51 AM]	
CLM 6	1	S6	0.0500	0.4746	0.0508	5/31/2012@4:21:04 AM				
BE23101-BLK1	1	<u>S8</u>	(-0.0164)	-0.0023	-0.0010	5/31/2012@4:22:19 AM				
	C	alibration:	Table/Fig. 1							
COL CHK NO2	1	1	3 .3154)	30.4919	3.2777	5/31/2012@4:23:33 AM			TV = 3.0	110% Rec
BE23101-BS1	1	2	3.095 0	28.4753	3.0728	5/31/2012@4:24:46 AM			-	_
BE23101-MRL1	1	3	0.0529	0.6318	0.0673	5/31/2012@4:26:00 AM				
1205011-01	1	4	-0.0060	0.0927	0.0086	5/31/2012@4:27:13 AM		ļ		
1205011-02	1	5	(0.1592	1.6054	0.1732	5/31/2012@4:28:26 AM				
BE23101-DUP1	1	6	0.1652	1.6603	0.1792	5/31/2012@4:29:39 AM				
1205011-03	1	7	Ø.1610°	1.6214	0.1751	5/31/2012@4:30:52 AM		1		
BE23101-MS1	1	8	Q 1969)	11.1030	1.2197	5/31/2012@4:32:05 AM		İ		
	Sp	ike Level:	1. <u>000</u> 0							
1205011-08	1	9	(0.009)	0.0643	0.0066	5/31/2012@4:33:17 AM				
1205011-09	1	10	(0.0319	0.4397	0.0453	5/31/2012@4:34:30 AM				
1205011-10	1	11	0.0313	0.4342	0.0464	5/31/2012@4:35:43 AM				
1205011-11	1	12	0.6267	5.8840	0.6437	5/31/2012@4:36:54 AM				
BE23101-CCV1	1	S3	1.0462	9.7229	1.0556	5/31/2012@4:38:07 AM				
	Kno	wn Conc:	1.0000							
BE23101-BLK2	1	S8	-0.0153	0.0082	2.6125e-4	5/31/2012@4:39:22 AM	·		J	

Analyte Properties Table for OM_5-31-2012_04-14-02AM.OMN

Channel 3
NO3 + NO2
mg N/L
First Order
True
Faise
None
False
110
Direct/Bipolar
False
9
57

DIM0205810 DIM0205729

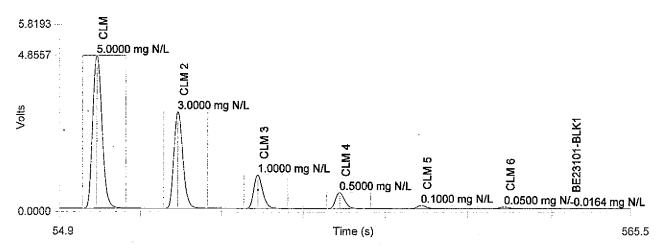
Control of the Contro

And the first term of the control of the section of

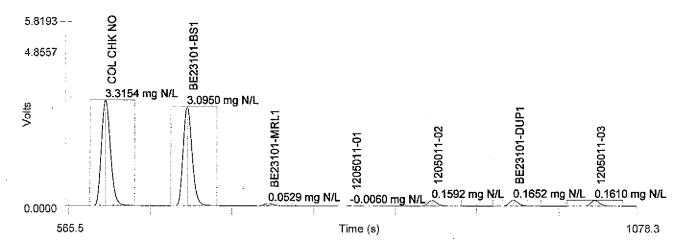
The entire transfer of the committee of the problem of the

			Long And I						
	1 .41 34	FO ^M 370 U	Jan Carlo	e A		prince in	;	12 M/s (C) (12	
		Milet with 1984 of f			4.	-,			
								No. 18	
						-		in the second	
		a a diala Milatria.						ÁH.A	
				3.1	Altrical Control			\$ 1.44 Y	
		The state of the s						1 3 1 11 1	
					4.7			1998 S. 120 Life E.	
					10 July 43:447-35	1.00			
				2000	4.51011	•		arys, mayg	
		MARKS ARE BUILDING		25.7			17	files in a second	
		ា សមាចារាជាធិបាន	7	1.0					
		Charlet Weign Plant - Pr		747 J. C		114		1.2	
			2017/12	Sec. 1.1.5	8 4 7			20 0 f R f s	
		计性别 医胸膜试验检验	x 1	25.5		ξ.			
				41 EC 1				高级中产生的1997。1998年	
			74.15.7	3-17				PM Viviality	
						1000	1.5		
				4130 u					
		n an july six six in 224			7. 7. 4				
				- 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1					
		Control of Figure 1980 of		(* Y				#	
				89.00 D			Í		
		Act March	14.2554	15.36				m yezer Ma	

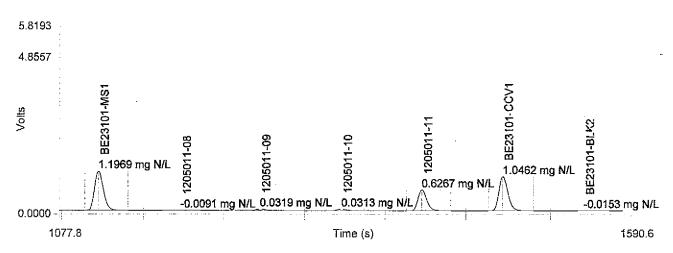
. We first the least of the properties of the second state of the


| - 18 m 37 km
- 18 da - 91375 S.F |
|---|---------------------------------------|
| 154. fee | THUS NAMED AS |
| A Section | and selections. |
| ega ji | 1920 m |
| C# 12 12 | ్లాడ్ , నుండ్ అండ |
| 55 T | Constitution to the same |
| er-sia | king i helidaCilina |
| UT 1 | 医骨髓 医动物毒素 医二 |
| | remaining great for the |
| Methodological Control | 21112 |
| 97)t/: | PROPERTY OF BUILDING |
| 1 | |
| ₹. | e e e e e e e e e e e e e e e e e e e |

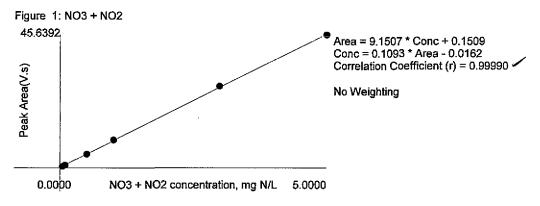
Author: John Curry


Date : 5/31/2012

Channel 3: Set 1 of 3


WO 1205011 Dimock Residential Ground water

Channel 3: Set 2 of 3


Channel 3: Set 3 of 3

Jole 1/2/12

Table 1: NO3+NO2 WO 1205011 Dimock Residential Ground water

_	Conc. (mg N/L)	Rep	Peak Area (Volt-s)	Peak Height (Volts)	% Residual	Detection Date	Detection Time
1	5.0000	1	45.6392	4.7429	0.6	5/31/2012	4:16:05 AM
2	3.0000	1	27.9778	3.0011	-1.4	5/31/2012	4:17:17 AM
3	1.0000	1	9.5714	1.0362	-2.9	5/31/2012	4:18:30 AM
4	0.5000	1	4.6331	0.4974	2.0	5/31/2012	4:19:43 AM
5	0.1000	1	0.9136	0.0972	14.3	5/31/2012	4:20:56 AM
6	0.0500	1	0.4746	0.0508	22.0	5/31/2012	4:22:10 AM

Jk 6/7/12 that is the second of the second purifying the second of t

V (1975)

ing the state of t

EPA Region 3 - OASQA - NUTRIENTS SAMPLE PREPARATION LOG

BE23101

bch_Nutrients.rpt

•							
Project:	DAS R33989		Location:	EPA #3 Shelf 8B			
Work Order No: Site Name:		1205011 Dimock Residential Groundwater		OSWER - Emerger	ncy Response		
Analysis:	Nitrite+Nitrate	e as Nitrogen by EPA 353.2 F	IA Account#:	2012T03N303DC6	A3TARS00		
Matrix:	Water		Bench She	et Prepared Date:	05/31/12 11:02	2	
Analyst:	Curry		Sample Prep date:	5/31/12	М	ETHOD/SOP:	EPA 353.2
DI Water Criteria:	18 (MΩ-cm) <u>Y</u>) / N	Reagent Purity corre	ect: 🕎 / N			
Pipet Log#:	SNB 49	<u> </u>	Balance Log:S	NR 60	Те	emperature Log:	SNB 47
Comments from WO	:		Certificate of Analys	sis Log#: SNB 45	5		
Date/Time of A	nalysis:	CCV Std #:	Autoclav	e#Temp/Time	Autoclave # Te	mp/Time out:	
		1200325	in:	N/s .	N /A	a .	1

Date/Time of Analysis:	CCV Std #:	Autoclave#Temp/Time	Autoclave # Temp/Time out:
	1200335	in: N/A	N/A
Standard/Reagent Prep Log	Vol Used (mL):	Hot Block # Temp/Time	Hot Block # Temp/Time out:
#: PNB 145	1.0 ML into 100 ML DI	in: N/A	N/A
Maintenance Log#: SNB 227	Samples < 6°C: (Y)/ N		

DIM0205729

EPA Region 3 - OASQA - NUTRIENTS SAMPLE PREPARATION LOG

BE23101

bch_Nutrients.rpt

Surrogate used:

LabNumber	Cont ID	Sample Type		filtered or n)	Initial (mL)	Final (mL)	pH <	: 2		oH usted	Spike1	Spike1 Amount µ1	SourceID	ExtractionComments
1205011-01	С	SAM	W	0	8	8	42	5	Inst	hrment iuska				11 Drinking Water
1205011-02	С	SAM	1		8	8	1			l				11 Drinking Water
1205011-03	С	SAM		-	8	8								11 Drinking Water
1205011-08	С	SAM			8	8								11 Drinking Water
1205011-09	С	SAM			8	8								11 Drinking Water
1205011-10	С	SAM			8	8								11 Drinking Water
1205011-11	С	SAM			8	8								11 Drinking Water
BE23101-BLK1					8	8	1						-	
BE23101-BS1					100	100		·			1200336	3000	-	
BE23101-DUP1					8	8		Г			_	*****	1205011-02	
BE23101-MRL1					100	100					1200336	50	-	
BE23101-MS1			\	,	8	8	,			,	1200335	80	1205011-03	

Nitrite/Nitrate as N Standard/Reagent Preparation

Analyst: J. Curry Date: 5/31/12 SOP Number: 10-107-04-1-6

1000 mg	1000 mg/L Stock Standard Element ID: ERA <u> oo618</u> SPEX <u> loo619</u>										
Stock Solution	Element ID	Date Prepared	Expiration Date	Vendor	Stock Conc	Amount Used	Final Volume	Final Conc.			
NO ₂ -N	N/A -		>	ERA	1000 mg/L	10.0 mL	100 mL	100 mg/L			
NO ₂ -N	N/A —		^	SPEX	1000 mg/L	10.0 mL	100 mL	100 mg/L			
NO ₃ -N	1200335	5/3/12	6/13/12	ERA	1000 mg/L	10.0 mL	100 mL	100 mg/L			
NO ₃ -N	1200336	5/31/12	6/13/12	SPEX	1000 mg/L	10.0 mL	100 mL	100 mg/L			

* Certificates of Analysis Logbook#: SNB225

Balance log book#: SNB60

Element ID of Stock Solution used 12.00335	Stock Conc.	Amount used (mL)	Final Volume	Final Concentration in mg NO3-N/L
CLM 1	100 mg/L	5.0	100 mL	5.0
CLM 2	100 mg/L	3.0	100 mL	3.0
CLM 3	100 mg/L	1.0	100 mL	1.0
CLM 4	100 mg/L	.0.5	100 mL	0.5
CLM 5	100 mg/L	0.1	100 mL	0.1
CLM 6	100 mg/L	0.05	100 mL	0.05

Reagent purity checked: YES or No

DI Water 18.2 Ω:YES or No

	Amount	Final	Prepared	Exp	Bar	Prepared	
method for preparation e information.)	used (g)	Vol. (mL)	Date	Date	Code	By T	
Sodium Hydroxide (NaOH)	N/A -					>	
Ammonium Chloride (NH₄Cl)	85.03694	66/7/12	5/15/12	5/16/13	5619		
Disodium Ethylenediamine Tetraacetic Acid Dihydrate (Na₂EDTA≌2H₂O)	0649 1.1599	1000 Urliz	5/10/12 Funlis	טוועט	5685	Jk	
Phosphoric Acid (H ₃ PO ₄)	100mL				5693		
Sulfanilamide (C ₆ H ₈ N ₂ O ₂ S, 4- (NH ₂)C ₆ H ₄ SO ₂ NH ₂)	40.H /4	1000	5/15/12	6/15/12	13903	W.	
N-(1- naphthyl)ethylenediamine dihydrochloride (NED)	1.0484	sky/1/12			5690		
	Sodium Hydroxide (NaOH) Ammonium Chloride (NH ₄ Cl) Disodium Ethylenediamine Tetraacetic Acid Dihydrate (Na ₂ EDTA≅2H ₂ O) Phosphoric Acid (H ₃ PO ₄) Sulfanilamide (C ₆ H ₈ N ₂ O ₂ S, 4- (NH ₂)C ₆ H ₄ SO ₂ NH ₂) N-(1-	Sodium Hydroxide (NaOH) Ammonium Chloride (NH ₄ Cl) Disodium Ethylenediamine Tetraacetic Acid Dihydrate (Na ₂ EDTA≅2H ₂ O) Phosphoric Acid (H ₃ PO ₄) Sulfanilamide (C ₆ H ₈ N ₂ O ₂ S, 4- (NH ₂)C ₆ H ₄ SO ₂ NH ₂) N-(1-	method for preparation re information.) Sodium Hydroxide (NaOH) Ammonium Chloride (NH ₄ Cl) Disodium Ethylenediamine Tetraacetic Acid Dihydrate (Na ₂ EDTA\(\text{E}\text{2}\text{H} ₂ O) Phosphoric Acid (H ₃ PO ₄) Sulfanilamide (C ₆ H ₈ N ₂ O ₅ S, 4- (NH ₂)C ₆ H ₄ SO ₂ NH ₂) N-(1-	method for preparation re information.) Sodium Hydroxide (NaOH) Ammonium Chloride (NH₄Cl) Disodium Ethylenediamine Tetraacetic Acid Dihydrate (Na₂EDTA≅2H₂O) Phosphoric Acid (H₃PO₄) Sulfanilamide (C₆H₃N₂O₂S, 4-(NH₂)C₆H₄SO₂NH₂) N-(1- N-(1- Date Vol. (mL) S5.0249 44/1/2 S5.0249 44/1/2 1000 5/15/12 1000 5/15/12	method for preparation re information.) Sodium Hydroxide (NaOH) Ammonium Chloride (NH ₄ Cl) Disodium Ethylenediamine Tetraacetic Acid Dihydrate (Na ₂ EDTA \cong 2H ₂ O) Phosphoric Acid (H ₃ PO ₄) Sulfanilamide (C ₆ H ₈ N ₂ O ₂ S, 4- (NH ₂)C ₆ H ₄ SO ₂ NH ₂) N-(1-	Sodium Hydroxide (NaOH) N/A Date Date Code	

Comments:	ωo	1205011

Certificate of Analysis

PRODUCT:

1000 mg/L Nitrate as N (NO₃-N)

CATALOG NUMBER:

052 -125 mL; 991 - 500 mL

LOT NUMBER:

180111

ISSUE DATE:

January 31, 2011

REVISION DATE:

Original

STARTING MATERIAL:

Potassium Nitrate (KNO₃)

CERTIFIED CONCENTRATION1:

1000 mg/L

UNCERTAINTY²:

0.4%

MATRIX:

18 megohm deionized water

DENSITY:

 1.0032 ± 0.0008 g/mL at 21.5°C and 776 mm Hg

TRACEABILITY3:

97.4%

NIST/SRM:

3185 Nitrate

VERIFICATION METHOD:

Ion Chromatography

STORAGE:

- Store at 20-25°C
- 1. The Certified Concentration is the actual made-to concentration confirmed by ERA analytical verification.
- 2. The stated Uncertainty is the total propagated uncertainty at the 95% confidence interval. The uncertainty is based on the preparation of the product and includes uncertainty related to the starting material used and the volumetric and gravimetric measurements made. The method of calculating uncertainty is taken from the ISO Guide to the Expression of Uncertainty in Measurement (current version). The uncertainty applies to the product as supplied and does not take into account any required or optional dilutions and/or preparations the laboratory may perform while using this product.
- 3. Traceability Recovery = ((% Recovery certified standard)/(% Recovery NIST SRM))*100.

The traceability data shown were compiled by analyzing the ERA standards or their associated stock solutions against the applicable NIST SRMs.

This standard expires 1/2013. The certified values are monitored and purchasers will be notified of any significant changes resulting in recertification or withdrawal of this certified reference material during the period of validity of this certificate.

This product is intended to be used as either a calibration standard or a quality control check of the entire analytical process for the analytes/matrix included in the standard.

If you have any questions or need technical assistance, please call ERA technical assistance at 1-800-372-0122 or email to info@eragc.com

Certifying Officer:

6000 West 54th Ave., Arvada CO 80002

800-372-0122

fax: 303-421-0159

www.eraqc.com

SPEXertificate®

Certificate of Reference Material

Catalog Number:

AS-NO3N9-2X/2Y

Lot No. 2-78NO3N-2

Description:

1000 mg/L Nitrate- Nitrogen

Matrix:

H₂O

This Ion Chromatography Certified Reference Material, CRM, is intended primarily for use as a calibration standard or quality control standard for ion chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1005 mg/L

Uncertainty Associated with Measurement: ±3 mg/L

Certified Value is Traceable to: 3185*

- indicates NIST SRM

† - indicates SPEX CertiPrep CRM (when NIST SRM is not available)

prepared gravimetrically

The CRM is prepared gravimetrically using high purity Sodium Nitrate, Lot# 04091C. The certified value listed is the average of values obtained by classical wet assay and ion chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1004 mg/L

Method:

Precipitate using Nitron Acetate. Filter, dry and weigh as C20H16N4HNO3

Instrumental Analysis by Ion Chromatography:

1005 mg/L

Uncertified Properties

Trace lonic Impurities in the Actual Solution via IC Analysis:

Element	mg/L	Element	mg/L
Br⊤	<0.2	NO₂⁻	<0.2
CI-	<0.5	PO₄-³	<0.3
F-	< 0.03	\$O₄⁻²	<0.2

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable and accurate to +/- 0.5% of the certified value. This includes uncertainty components due to preparation, homogeneity by the most precise method, short term and long term stability as well as transpiration loss. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly closed and stored under ambient laboratory conditions.

MAR - - 2011

Date of Certification:

© 2009 SPEX CertiPrep, Inc.

Report of Certification

This Certified Reference Material (CRM) has been prepared and certified under an ISO 9001:2000, ISO 17025:2005, and ISO Guide 34:2000 quality system consistent with the following quality standards:

- Guide To The Expression Of Uncertainty In Measurement 1997
- EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement — Second Edition
- ASTM Guide D6362-98
- NIST Technical Note 1297
- ISO 17025:2005: General Requirements for the Competence of Testing and Calibration Laboratories — Certified by A2LA
- ISO Guide 31:2000: Reference Materials Contents of Certificates and Labels

- ISO Guide 34:2000: General Requirements for the Competence of Reference Material Producers — Certified by A2LA
- ILAC-G12-2000; Guidelines for the requirements for the competence of reference materials producers
- ISO/REMCO N280
- Compliant with 10CFR50, Appendix B as applied to Chemicals & Reagents (NRC)
- Compliant with 10CFR21, Reporting of Defects and Non-compliance (NRC)

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9001:2000, ISO 17025:2005, and ISO Guide 34:2000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further assistance, please contact the Sales Support Department at crmsales@spexcsp.com.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles (where appropriate), and Class A/calibrated volumetrics have been used in all preparations.

Homogeneity:

The homogeneity of the CRM has been confirmed by procedures consistent with ISO 17025:2005, ISO Guide 34:2000, and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed to prove homogeneity in accordance with our internal procedure 4600-HOMOGEN-1A. This is consistent with the intended use of the CRM.

Statistical Estimator and Confidence Limits:

The certified value 'X' listed on the reverse of this document is at the 95% level of confidence and can be expressed as:

- X = x±U where x=measured value, U=expanded uncertainty
- U= ku_C where k=2 is the coverage factor at the 95% confidence level U_C is obtained by combining the individual element standard uncertainty components u_i , and $u_C = \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from the Traveler Report (SPEX CertiPrep's traceability documentation) identified by the lot number of this CRM. For further assistance, please contact the Sales Support Department at crmsales@spexcsp.com.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this Reference Material shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Ave, Metuchen, NJ 08840 www.spexcsp.com • E-mail: crmsales@spexcsp.com Phone: 1-800-LAB-SPEX • Fax: 732-603-9647

Total Dissolved Solids (TDS)Technical Review Checklist (TRC) Checklist For Internal Use Only SOP R3-QA105-110811

Site Name:	<u>Dimock Residential Groundwater</u> We	O#:1205011					
Analyst:	J. Curry Date given to Reviewer: 4/7//2						
Matrix (circle):	Matrix (circle): Solid /(Aqueous/) Other						
		/ SDWA / Other: OSWER - Emergency Response					
x rogram (on oro).	Superione rectain with (191828)	, bb with distance is morganity response					
The signature by	class indicates the following:	-					
	elow indicates the following: needs of the customer according to the request.						
	erformed as per the SOP, or exceptions docume						
	needed to recreate the analyses has been review						
	set to Peer Reviewed in Element.						
	,						
Peer Reviewer sie	enature Audico	Date accepted 6/7/5Z					
x 001 X10 / X0 // 01 DI		Bute decepted 6/ //P2=					
	1/						
ii any data for this cas	se is stored with another case file, give Site Nar	ne and wO#					
Dani Daniaman C	Samuelatas Castian Dalama						
Peer Keviewer C	Completes Section Below:						
Caraval		VEG NO N/A Comments					
General:	I with sample IDs, site name,	YES NO N/A Comments					
WO#, analyst name, o							
	riate for the project DQOs?						
(<10 for 100 mls, <	2 0						
•	clearly identified and matched to						
the assignment shee	•						
-	ng times met? (7 Days from collection)	<u> </u>					
Quality Control:	ig times met: (/ Days from concetion)						
Outre Control							
Was the analytical l	balance calibrated to bracket reported resul	ts?					
Are balance verifica	-						
	ghts used in analysis?						
	d to 180° C? (± 2° C)						
	measures of precision and accuracy include	ed					
	and meets the required limits?						
(see limits below)		-					
` ,							
Calculations/Report	<u>t:</u>						
Calculations and trans	scriptions -	•					
at least 10% calcula	ations checked.						
Element Draft Report		<u> </u>					
Deviations and proble							
_	tage complete, labeled, and legible						
with date and analys	——————————————————————————————————————						
	correctly applied, outliers flagged						
and corrective action		<u> </u>					
	tion steps described with sufficient						
detail to recalculate		<u> </u>					
	cant figures reported?	<u> </u>					
Is the report free of	typographical and grammatical						
errors and does it fo	ollow the accepted format?						

Page 1 of 2

Analyte	LCM % Recovery Limits	LD2 Precision Limits	LRB Method Blank	CLC	Avg of 3 weighings (if needed)
TDS	Use vendor limits	Abs. Difference: UWL = 15 mg/L UCL = 20 mg/L RPD < 20% 1 per 10 samples	Fails if ≥ NQL and > 1/10th of sample	1 per 10 samples and at end	RSD <u><</u> 25%

Additional Comments by Peer Reviewer:	
α	
Suglect feeled and is qualified.	12
Analyst Ensures that the Data Case File is Complete and Accurate as per SOP R3QA-066: Bench sheet or Work Order list Sample Prep logs Instrument run log # 6/2/12 Raw data Standard/Reagent Prep log # 6/2/12 Data status set to analyzed	
Sample Prep logs	Element Peer Review report Raw data
Additional Comments by Analyst on data issues:	
•	
	The second secon
-	
• •	

Oct 2010

_I:\ASQAB_AT Team\Checklists\TDS TRC 2010.doc

Page 2 of 2

Report Narrative

SVOAs Analysis Note:

All samples were extracted by EPA SW-846 Method 3520C followed by analysis using EPA SW-846 Method 8270D. Refer to notes in case file for additional information regarding the analysis.

For this project one additional compound is added to the SVOC analysis; 1-methylnaphthalene. This is a non-routine analysis. All current in-house quality control limits were met.

For all samples, quantitation limits for 2,4-dinitrophenol are rejected qualifed "R" due to zero percent recovery in the low-spike quality control check (BS1) and less than 10% recovery in the mid-level spike quality control check (BS2). For all samples 4,6-dinitro-2-methylphenol and pentachlorophenol had less than 10% recovery in the low-spike quality control check (BS1) but within acceptance limits in the mid-level spike quality control check (BS2); therefore, quantitation limits are raised to the mid-level value. In the report, only 21 compounds are reported for blank spike quality control check samples. Quality control information about the additional spiked compounds is available in the case file.

Results for a limited number of compounds found in all samples have been qualified "B" because of contamination found in either the method blank, field blank, or equipment blank.

Glycols by HPLC/MS/MS Note:

Samples were analyzed for diethylene glycol (DiG) (CAS# 111-46-6), triethylene glycol (TriG) (112-27-6), tetraethylene glycol (TeG) (112-60-7), 2-butoxyethanol (2-Bu) (111-76-2) and 2-methoxyethanol (2-Me)(109-86-4) by HPLC/MS/MS (inst id: TQD-LCMSMS) on a Waters Atlantis dC18 3um 2.1 x 150mm column (s/n-0141301481).

An HPLC/MS/MS method does not currently exist for these analytes. SOP R3QA239 is in preparation. ASTM D 7731-11 and EPA SW-846 Methods 8000C and 8321 were followed for method development and QA/QC limits where applicable. All applicable OASQA On Demand QA/QC protocols were followed. All QC were within criteria. The aqueous samples were injected without extraction onto the HPLC/MS/MS system.

Refer to notes in the case file for additional information regarding the analysis.

Nitrite/Nitrate Analysis Note:

Samples were run as an 'On-Demand' analysis..

Total Nitrogen Analysis Note:

Samples were run as an 'On-Demand' analysis..

1205011 DRAFT 06 04 12 1435 Page 1 of 8

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Site Name: Dimock Residential Groundwater

Project #: DAS R33989

ANALYTICAL REPORT FOR SAMPLES

Station ID	Laboratory ID	Matrix	Date Sampled	Date Received
FB22	1205011-01	Water	05/22/12 11:58	05/23/12 12:22
HW64	1205011-02	Drinking Water	05/22/12 11:10	05/23/12 12:22
HW64-P	1205011-03	Drinking Water	05/22/12 11:40	05/23/12 12:22
FB23	1205011-08	Water	05/23/12 13:25	05/24/12 11:53
HW63z	1205011-09	Drinking Water	05/23/12 13:10	05/24/12 11:53
HW63	1205011-10	Drinking Water	05/23/12 13:09	05/24/12 11:53
HW62	1205011-11	Drinking Water	05/22/12 15:59	05/24/12 11:53

1205011 DRAFT 06 04 12 1435

Page 2 of 8

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Site Name: Dimock Residential Groundwater Project #: DAS R33989

Physical Parameters

	Analyte		Result	Flags/ Qualifiers	Quantitation Limit	Units	Dilution	Prepared	Analyzed	Method/SOP#
•	Lab ID: Station ID:	1205011-01 FB22	··.							
	Sample Matrix:	Water								
	Collected:	05/22/2012					·			
	Total Dissolved So	lids .	U		10	mg/L	1	05/24/12	05/25/12 10:00	SM2540C/R3QA105

Physical Parameters

Analyte	-	Result	Flags/ Qualifiers	Quantitatio Limit	on Units	Dilution	Prepared	Analyzed	Method/SOP#
Lab ID: Station ID:	1205011-02 HW64		**						
Sample Matrix:	Drinking Water								
Collected:	05/22/2012								
Total Dissolved Solids		41	Ţ	10	mg/L	1	05/24/12	05/25/12 10:00	SM2540C/R3OA105

Physical Parameters

Analyte		Result	Flags/ Qualifiers	Quantitation Limit	Units	Dilution	Prepared	Analyzed	Method/SOP#
Lab ID:	1205011-03								
Station ID:	HW64-P								
Sample Matrix:	Drinking Water								
Collected:	05/22/2012								
Total Dissolved So	olids	45		10	mg/L	1	05/24/12	05/25/12 10:00	SM2540C/R3OA105

1205011 DRAFT 06 04 12 1435 Page 3 of 8

DIM0205828

Region 3 Environmental Science Center Office of Analytical Services and Quality Assurance 701 Mapes Road Fort Meade, Maryland 20755-5350

Dimock Residential Groundwater Site Name:

Project #: DAS R33989

Physical Parameters

Quantitation Flags/ Analyte Result Qualifiers Limit Dilution Prepared Analyzed Method/SOP# Units

Lab ID:

1205011-08

Station ID:

FB23

Sample Matrix: Collected:

Water 05/23/2012

Total Dissolved Solids

U

10

mg/L

05/24/12 05/25/12 10:00

SM2540C/R3QA105

Physical Parameters

Flags/ Quantitation Analyte Result Qualifiers Limit Units Dilution Prepared Analyzed Method/SOP#

Lab ID:

1205011-09

Station ID:

HW63z

Sample Matrix:

Drinking Water

Collected:

05/23/2012

Total Dissolved Solids

156

10

mg/L

05/24/12 05/25/12 10:00

SM2540C/R3QA105

Physical Parameters

Quantitation Flags/ Dilution Prepared Analyte Result Analyzed Qualifiers Limit Units Method/SOP#

Lab ID:

1205011-10

Station ID: Sample Matrix: HW63

Collected:

Drinking Water 05/23/2012

Total Dissolved Solids

159

10

mg/L

05/24/12 05/25/12 10:00

SM2540C/R3QA105

1205011 DRAFT 06 04 12 1435

Page 4 of 8

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Site Name: Dimock Residential Groundwater

Project #: DAS R33989

Physical Parameters

	Analyte		Result	Flags/ Qualifiers	Quantitation Limit	Units	Dilution	Prepared	Analyzed	Method/SOP#
	Lab ID: Station ID: Sample Matrix: · Collected:	1205011-11 HW62 Drinking Water 05/22/2012								
Total Dissolved Solids		123		10	mg/L	1	05/24/12	05/25/12 10:00	SM2540C/R3OA105	

DIM0205729

DIM0205830

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance 701 Mapes Road Fort Meade, Maryland 20755-5350

Site Name: Dimock Residential Groundwater

Project #: DAS R33989

%REC

QC Data **Physical Parameters**

Spike

Source

Quantitation

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BE22405 - TDS/TSS prep										
Blank (BE22405-BLK1)				Prepared:	05/24/12	12:34	Analyzed:	05/25/12	10:00	<u>, ,</u>
Total Dissolved Solids	U	10	mg/L							
Duplicate (BE22405-DUP1)	Sour	ce: 120501	1-02	Prepared:	05/24/12	12:34	Analyzed:	05/25/12	10:00	-
Total Dissolved Solids	51	10	mg/L		41			22	20	A
Reference (BE22405-SRM1)				Prepared:	05/24/12	12:34	Analyzed:	05/25/12	10:00	
Total Dissolved Solids	246		mg/L	250.00		98	74-126			

1205011 DRAFT 06 04 12 1435

Page 6 of 8

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Site Name: Dimock Residential Groundwater

Project #: DAS R33989

Notes and Definitions

J The identification of the analyte is acceptable; the reported value is an estimate.

A Quality control value is outside acceptance limits.

%REC Percent Recovery

RPD Relative Percent Difference

U Analyte included in the analysis, but not detected at or above the quantitation limit.

Quantitation Limit: The lowest concentration of an analyte that can be reliably measured within specified limits of precision and accuracy for a specific laboratory analytical method and that takes into account analytical adjustments made during sample preparation and analysis.

REPORTING PROTOCOL FOR SOLID SAMPLE RESULTS: Percent Solids (percent dry wt at 105 degrees C) determinations are routinely performed for most organic and inorganic analyses. Consequently, these samples are analyzed wet and converted to a dry weight result for reporting purposes. If metals and mercury analyses are requested, they are routinely prepared for analyses by an initial drying at 60 degrees C, homogenized prior to digestion, and are analyzed and reported on a dry weight basis. Oil-type samples are analyzed and reported on a wet weight basis for all analyses because of the nature of the sample matrix. Any exceptions to this protocol will be noted in the narrative.

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Items for Project Manager Review

LabNumber	Analysis	Analyte	Exception				
•	Total Dissolved Solids by	254 (Water)	Special Units: (mg/L)				
1205011-01	Total Dissolved Solids by	254	Status is Analyzed				
1205011-02	Total Dissolved Solids by	254	Status is Analyzed				
1205011-03	Total Dissolved Solids by	254	Status is Analyzed				
1205011-08	Total Dissolved Solids by	254	Status is Analyzed				
1205011-09	Total Dissolved Solids by	254	Status is Analyzed				
1205011-10	Total Dissolved Solids by	254	Status is Analyzed				
1205011-11	Total Dissolved Solids by	254	Status is Analyzed				
BE22405-DUP1	Total Dissolved Solids by	254Total Dissolved Solids	Exceeds RPD control limit				

EPA Region 3 - OASQA - TDS - SAMPLE PREPARATION/RUN LOG

BE22405 bch_TDS.rpt

OSWER - Emergency Response

Pro	ject:	

DAS R33989

1205011

Work Order No:

Dimock Residential Groundwater

Analysis:

Site Name:

Total Dissolved Solids by 2540C

Matrix:

Comments from WO:

Analyst: JoCurry

SOP: __R3 QA-105

DI H2O Source/ Log #: _H105/SNB31_

Resistivity: 18.2 Ω

SRM: EAA Lot#: 9191-506 TV: 250 Accept. Limits: 185-314 Cert. Log: SNB222

Oven ID: X05H403____ temp criteria: 104 ± 2C Oven ID: X05H403____ temp criteria: 180 ± 2C Oven Reference Thermometer S/N: _387788

Account#: 2012T03N303DC6A3TARS00

Location: EPA #3 Shelf 8B

Oven Reference Thermometer S/N: _387788__

Balance ID: _P119650____ Weight Set ID: _

wt. criteria: $\pm 2\%$ for <1 g and $\pm 0.5\%$ for ≥ 1 g

Prep Date: 5/24/12	Analyzed Date: _ 5/25//2	CLC (1 per 10 samples and at end)
Wgt 1 True <u> </u>	Wgt 1 True 50.0000 Observed Wgt 50.0001 /	CLC 1 True Wgt <u>@ 6000</u> Observed Wg <u>t 50.000</u> 2
Wgt 2 True <u>75.000</u> 0bserved Wgt <u>74.999</u> 9	Wgt 2 True 75.0000 Observed Wgt 75.0001	CLC 2 True Wgt <u>50.0000</u> Observed Wgt <u>50.00</u> 02
Wgt 3 True [100.000] Observed Wgt 100.0003	Wgt 3 Trud <u>00.000</u> Observed Wgt <u>100.000</u> /	CLC 3 True Wgt 50.0000 Observed Wgt 49.9999

EPA Region 3 - OASQA - TDS - SAMPLE PREPARATION/RUN LOG

BE22405 bch_TDS.rpt

LabNumber ID	Cont ID	Sample Type	Dish ID	Dish Wt. (g) B	Sample Vol (mL) C	Dish wt. + Residue (g) A Date: 5/24/12/5/25/12 Time/temp In: 1550/105°C Time/temp Out: 1000/180°C	Dish wt. + Residue (g) A Date: 5/25/12 Time/temp In: 1210 / 1909 Time/temp Out: 1400 / 1309	Dish wt. + Residue (g) A Date: N/A Time/temp In: Time/temp Out:	Sample Result (mg/L) (A-B) x 1000 x1000 C	SourceID
1205011-01	В	SAM	41	79.9134	100 ML	79.9132	79.9135	N/n	-2	
1205011-02	В	SAM	42	71.5544		71.5585	71.5591		41	
1205011-03	В	SAM	85	74.4238		74.4283	74.4299		45	
1205011-08	B	SAM	28	76.6330		76.6331	76.6336		I	
1205011-09	В	SAM	76	76.6705		76.6861	74.6868		154	
1205011-10	В	SAM	77	72.3576		72.3735	72.3751		159	
1205011-11	В	SAM	20	76.2042		76.2165	76.2162		123	
BE22405-BLK1			07	75.8564		75.8568	75.85 81		4	-
BE22405-DUP1			48	73.7248		73.7299	75.7306		51	1205011-02
BE22405-SRM			02	79.6822		79.7068	Sample Dropped one weighting only		246	-

[&]quot;A", "B", and "C" as defined in Section 12.0 of the SOP, Data Analysis and Calculations.

DIM0205729

DIM0205835

TDS Worksheet

Analyst: J. Curry
Date: 5/25/2012
Batch ID: BE22405
Sile Name: Dimock Residential Groundwater
WO#: 1205011
TDS

	В	A	n.	ot reported A		A				Reported	Reported	<u> </u>			
Sample	Pan (g)	Res 1 (g)	D (g)	mg/L, Res 2 (c	<u>D(q)</u>	mg/L Res 3	(g) D	(g) <u>r</u>	mg/L	Value AVG/RPD	<u>AVG</u>	<u>WT. 1</u>	<u>WT. 2</u>	WT. 3 STD	%RSD
1205011-01	79.9134	79.9132	-0,0002	-2 79.913	5 0.0001	1 N/A	N/A	N/A		-2					
1205011-02	71.5544	71.5585	0.0041	41 71.559	1 0.0047	47 N/A	N/A	N/A		41					
1205011-03	74.4238	74.4283	0.0045	45 74.429	9 0.0061	61 N/A	N/A	N/A		45					
1205011-08	76.6330	76.6331	0.0001	1 76.633	0.0006	6 N/A	N/A	N/A		1					
1205011-09	76.6705	76.6861	0.0156	156 76.686	B 0.0163	163 N/A	N/A	N/A		156					
1205011-10	72,3576	72.3735	0.0159	159 72.375	1 0,0175	175 N/A	N/A	N/A		159					
1205011-11	76.2042	76.2165	0.0123	123 76.216	2 0.0120	120 N/A	N/A	N/A		123					
BE22405-BLK1	75.8564	75.8568	0.0004	4 75,858	1 0.0017	17 N/A	N/A	N/A		4 .					
8E22405-DUP1	73.7248	73,7299	0.0051	51 73,730	6 0.0058	58 N/A	N/A	N/A		51 AVG=46	RPD= 21.7				
BB22405-SRM1	79.6822	79.7068	0.0246	246 N/A*	N/A	N/A N/A	N/A	N/A		246					

^{*} Weighting dish was dropped when returning it to the oven for the second drying, one value was used to reported the result.

A Waters Company

Certificate of Analysis

Lot No. P199-506

WasteWatR™ Minerals

Catalog No. 506
Issue Date: October 18, 2011
Revision Date: Original

Certification

	Certified Value ¹ (mg/l)	Uncertainty ²	QC PALs™ ³ (mg/l)	PT PALs™ ⁴ (mg/l)			
Parameter							
alkalinity as CaCO ₃	28.5	7.5%	26.0 - 31.0	23.6 - 34.6			
chloride	80.1	1.0%	75.2 노 86.6	68.6 - 91.8			
conductivity at 25°C (umhos/cm)	420	0.9%	392 - 447	376 - 464			
fluoride	0.955	1.0%	0.859 - 1.07 >	0.713 - 1.20			
potassium	28.5	0.5%	24.9 - 30.8	23.5 - 33.9			
sodium	64.1	0.9%	57.6 - 69.8	54.4 - 73.6			
sulfate	32.5	2.8%	29.3 - 35.1	26.1 - 38.0			
total dissolved solids at 180°C	250	0.9%	222 - 278	185 - 314			
total solids at 105°C	257	0.9%	222 - 291	218 - 293			

Analytical Verification

-	Rou	ınd Robin Data ⁵		NIST Trace	ability
	Mean	Recovery	n	SRM Number	Recovery
	(mg/l)	(%)			(%)
Parameter					
alkalinity as CaCO ₃	28.5	100%	36	SRM 187e	99.3%
chloride	80.9	101%	56	SRM 3182	101%
conductivity at 25°C (µmhos/cm)	420	100%	67	SRM 999b	102%
fluoride	0.965	101%	32	SRM 3183	101%
potassium	27.9	97.8%	40	SRM 3141a	96.4%
sodium	63.7	99.4%	41	SRM 3152a	99.0%
sulfate	32.2	99.1%	42	SRM 3181	101%
total dissolved solids at 180°C	250	99.9%	46	SRM 999b	99.7%
total solids at 105°C	257	100%	24	SRM 999b	101%

Please see footnotes on back

6000 West 54th Ave., Arvada, CO 80002

800-372-0122

fax: 303-421-0159

www.eraqc.com

- 1. The **Certified Values** are the actual "made-to" concentrations confirmed by ERA analytical verification. The **Certified Values** for Total Dissolved Solids (TDS) and Conductivity are the mean reported concentrations for these analytes from ERA's proficiency testing study.
- 2. The stated **Uncertainty** is the total propagated uncertainty at the 95% confidence interval. The uncertainty is based on the preparation and internal analytical verification of the product by ERA, multiplied by a coverage factor which is equal to the Student t factor at a 95% confidence interval at n-1 degrees of freedom. The uncertainty applies to the product as supplied and does not take into account any required or optional dilution and/or preparations the laboratory may perform while using this product.
- 3. The QC Performance Acceptance Limits (QC PALsTM) are based on actual historical data collected in ERA's Proficiency Testing program. The QC PALsTM reflect any inherent biases in the methods used to establish the limits and closely approximate a 95% confidence interval of the performance that experienced laboratories should achieve using accepted environmental methods. Use the QC PALsTM to realistically evaluate your performance against your peers.
- 4. The PT Performance Acceptance Limits (PT PALsTM) are calculated using the regression equations and fixed acceptance criteria specified in the NELAC proficiency testing requirements. Use the PT PALsTM when analyzing this QC standard alongside USEPA and NELAC compliant PT standards. Please note that many PT study acceptance limits are concentration dependent (some non-linearly) and, therefore, the acceptance limits of this QC standard and any PT standard may differ relative to their difference in concentrations.
- 5. The Analytical Verification data include the mean value, percent recovery and number of data points reported by the laboratories in our Proficiency Testing study compared to the Certified Values. In addition, where NIST Standard Reference Materials (SRMs) are available, each analyte has been analytically traced to the NIST SRM listed.

Traceability Recovery (%) = [(% recovery certified standard)/(% recovery NIST SRM)]*100

The traceability data shown were compiled by analyzing the ERA standards or their associated stock solutions against the applicable NIST SRMs,

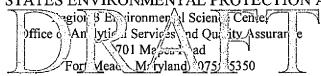
6. This standard **expires 12/2014.** The certified values are monitored and purchasers will be notified of any significant changes resulting in recertification or withdrawal of this certified reference material during the period of validity of this certificate.

If you have any questions or need technical assistance, please call ERA technical assistance at 1-800-372-0122 or email to info@eraqc.com.

Certifying Officer:

On-Demand Data Checklist For Total Nitrogen AS N Technical Review Checklist (TRC)

For Internal Use Only


	Dimock Residential Groundwater Weg. J. Curry D Solid / Aqueous / Other Superfund / RCRA / WPD (NPDES) d or Procedure used in Analysis: Quik	ate given to Revi	OSWER - En	nergency Response
samples were and These protocols is performance of the the EPA Region I reference must be	equest which falls outside OASQA's relyzed and the quality control (QC) was notice all the QC checks as per routing analytical method at the reported quality Manuals available for the method being performs unique, the procedures must be fully	s evaluated based e analyses plus sp antitation limit/s. al, current version med and reference	on the "On Decial verification These protocon. A written pro	emand" criteria. on of the ols are specified in ocedure or
The signature be	elow indicates the following:		•	
The analysis was peAll documentation r	needs of the customer according to the request, rformed as per the indicated Method, or except needed to recreate the analyses has been review set to Peer Reviewed in Element.	ions documented.		
Peer Reviewer sig	gnature <u>Suefues</u>	Date	accepted <i>6/</i>	7/12
If any data for this cas	se is stored with another case file, give Site Nar	ne and WO#		· · · · · · · · · · · · · · · · · · ·
Peer Reviewer C	Completes Section Below:			
General: Raw data is identified WO#, analyst name, o	with sample IDs, site name, late of analysis.	YES NO	N/A Com	ments
All logbooks complet	ed, reviewed and copies present in report?			<u>.</u>
Copies of certificates	present for standards?	<u> </u>		
Quality Control: Raw data present; inc corrections factors for	luding dilution factors, units, and solids?			
All requested samples	reported & DQO's met?			
Were samples analyze	ed within the 28 day hold time?	<u> </u>		
Were Total Nitrogen	samples preserved with acid?			
Sample results within	calibration range?			
Calibration Curve: Co	orrelation Coefficient ≥ 0.995?			
Are points from the co	rve omitted following the instrument n Policy?			

Page 1 of 2

CCV: Recovery ±10% of corresponding CLM conc.?	
BLK: < Reporting Limit?	<u> </u>
Secondary Source (High) BS: Recovery 85 - 115%?	. <u> </u>
Secondary Source (Low) LCV/BS: Recovery 60 - 140%?	
MS: Recovery 85 - 115%?	<u> </u>
DUP: RPD ≤20%?	
Calculations/Report: At least 10% Calculations and transcriptions checked.	
Element Draft Report reviewed.	
Deviations and problems documented.	
Analyst Ensures that the Data Case File is Complete 2	
Bench sheet or Work Order list Sample Prep logs Instrument run log Standard/Reagent Prep log Additional Comments by Analyst on data issues:	Appropriate TV sheets / Certificates of Analysis Element Peer Review report Raw data Data status set to analyzed
I:\ASQAB AT Team\Checklists\Phenol TRC 2008.doc	Oct 2010

Page 2 of 2

Report Narrative

SVOAs Analysis Note:

All samples were extracted by EPA SW-846 Method 3520C followed by analysis using EPA SW-846 Method 8270D. Refer to notes in case file for additional information regarding the analysis.

For this project one additional compound is added to the SVOC analysis; 1-methylnaphthalene. This is a non-routine analysis. All current in-house quality control limits were met.

For all samples, quantitation limits for 2,4-dinitrophenol are rejected qualifed "R" due to zero percent recovery in the low-spike quality control check (BS1) and less than 10% recovery in the mid-level spike quality control check (BS2). For all samples 4,6-dinitro-2-methylphenol and pentachlorophenol had less than 10% recovery in the low-spike quality control check (BS1) but within acceptance limits in the mid-level spike quality control check (BS2); therefore, quantitation limits are raised to the mid-level value. In the report, only 21 compounds are reported for blank spike quality control check samples. Quality control information about the additional spiked compounds is available in the case file.

Results for a limited number of compounds found in all samples have been qualified "B" because of contamination found in either the method blank, field blank, or equipment blank.

Glycols by HPLC/MS/MS Note:

Samples were analyzed for diethylene glycol (DiG) (CAS# 111-46-6), triethylene glycol (TriG) (112-27-6), tetraethylene glycol (TeG) (112-60-7), 2-butoxyethanol (2-Bu) (111-76-2) and 2-methoxyethanol (2-Me)(109-86-4) by HPLC/MS/MS (inst id: TQD-LCMSMS) on a Waters Atlantis dC18 3um 2.1 x 150mm column (s/n- 0141301481).

An HPLC/MS/MS method does not currently exist for these analytes. SOP R3QA239 is in preparation. ASTM D 7731-11 and EPA SW-846 Methods 8000C and 8321 were followed for method development and QA/QC limits where applicable. All applicable OASQA On Demand QA/QC protocols were followed. All QC were within criteria. The aqueous samples were injected without extraction onto the HPLC/MS/MS system.

Refer to notes in the case file for additional information regarding the analysis.

Nitrite/Nitrate Analysis Note:

Samples were run as an 'On-Demand' analysis...

Total Nitrogen Analysis Note:

Samples were run as an 'On-Demand' analysis..

1205011 DRAFT 06 04 12 1430 Page 1 of 8

Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Site Name: Dimock Residential Groundwater

Project #: DAS R33989

ANALYTICAL REPORT FOR SAMPLES

Station ID	Laboratory ID	Matrix	Date Sampled	Date Received
FB22	1205011-01	Water	05/22/12 11:58	05/23/12 12:22
HW64	1205011-02	Drinking Water	05/22/12 11:10	05/23/12 12:22
HW64-P	1205011-03	Drinking Water	05/22/12 11:40	05/23/12 12:22
FB23	1205011-08	Water	05/23/12 13:25	05/24/12 11:53
HW63z	1205011-09	Drinking Water	05/23/12 13:10	05/24/12 11:53
HW63	1205011-10	Drinking Water	05/23/12 13:09	05/24/12 11:53
HW62	1205011-11	Drinking Water	05/22/12 15:59	05/24/12 11:53

Page 2 of 8

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Site Name: Dimoc

Dimock Residential Groundwater

Project #: DAS R33989

Classical Chemistry Parameters

Flags/ Quantitation Dilution Prepared Analyte Result Qualifiers Limit Units Analyzed Method/SOP# Lab ID: 1205011-01 Station ID: **FB22** Sample Matrix: Water 05/22/2012 Collected: Total Nitrogen U 05/31/12 06/01/12 14:56 EPA 353.2 1.00 mg/L

Classical Chemistry Parameters

Analyte ·		Result	Flags/ Qualifiers	Quantitation Limit	Units	Dilution	Prepared	Analyzed	Method/SOP#
Lab ID: Station ID: Sample Matrix: Collected:	1205011-02 HW64 Drinking Water 05/22/2012	-							
Total Nitrogen		U		1.00	mg/L	1	05/31/12	06/01/12 14:58	EPA 353.2

Classical Chemistry Parameters

Analyte		Result	Flags/ Qualifiers	Quantitation Limit	Units	Dilution	Prepared	Analyzed	Method/SOP#
Lab ID: Station ID: Sample Matrix: Collected:	1205011-03 HW64-P Drinking Water 05/22/2012								
Total Nitrogen		U		1.00	mg/L	1	05/31/12	06/01/12 15:00	EPA 353.2

1205011 DRAFT 06 04 12 1430

Page 3 of 8

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance 701 Mapes Road Fort Meade, Maryland 20755-5350

Dimock Residential Groundwater Site Name: Project #: DAS R33989

Classical Chemistry Parameters

Analyte		Result	Flags/ Qualifiers	Quantitation Limit	Units	Dilution	Prepared	Analyzed	Method/SOP#
Lab ID: Station ID: Sample Matrix: Collected:	1205011-08 FB23 Water 05/23/2012								
Total Nitrogen		U		1.00	mg/L	1	05/31/12	06/01/12 15:03	EPA 353.2

Classical Chemistry Parameters

Analyte	·	Result	Flags/ Qualifiers	Quantitation Limit	Units	Dilution	Prepared	Analyzed	Method/SOP#
Lab ID:	1205011-09					, <u>, , , , , , , , , , , , , , , , , , </u>			
Station ID:	HW63z								
Sample Matrix:	Drinking Water								
Collected:	05/23/2012								
Total Nitrogen		U		1.00	mg/L	1	05/31/12	06/01/12 15:05	EPA 353,2

Classical Chemistry Parameters

Analyte		Result	Flags/ Qualifiers	Quantitation Limit	Units	Dilution	Prepared	Analyzed	Method/SOP#
Lab ID: Station ID: Sample Matrix: Collected:	1205011-10 HW63 Drinking Water 05/23/2012						,		
Total Nitrogen		U		1.00	mg/L	1	05/31/12	06/01/12 15:06	EPA 353.2

1205011 DRAFT 06 04 12 1430 Page 4 of 8

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Site Name: Dimock Residential Groundwater

Project #: DAS R33989

Classical Chemistry Parameters

Analyte		Result	Flags/ Qualifiers	Quantitation Limit	Units	Dilution	Prepared	Analyzed	Method/SOP#	
Lab ID: Station ID: Sample Matrix: Collected:	1205011-11 HW62 Drinking Water 05/22/2012									.
Total Nitrogen		U		1.00	mg/L	1	05/31/12	06/01/12 15:07	EPA 353.2	

1205011 DRAFT 06 04 12 1430 Page 5 of 8

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Site Name: Dimock Residential Groundwater

Project #: DAS R33989

QC Data **Classical Chemistry Parameters**

	Qua	nntation		Бріке	Source		%KEC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BE23102 - Nutrient Prep										
Blank (BE23102-BLK1)				Prepared:	05/31/12	11:10	Analyzed:	06/01/12	14:51	
Total Nitrogen	U	1.00	mg/L							
LCS (BE23102-BS1)				Prepared:	05/31/12	11:10	Analyzed:	06/01/12	14:53	
Total Nitrogen	7.00	1.00	mg/L	7.0000		100	85-115			
Duplicate (BE23102-DUP1)	Source:	120501	1-02	Prepared:	05/31/12	11:10	Analyzed:	06/01/12	14:59	
Total Nitrogen	U	1.00	mg/L		υ.		<u> </u>		20	
MRL Check (BE23102-MRL1)				Prepared:	05/31/12	11:10	Analyzed:	06/01/12	14:55	
Total Nitrogen	0.931400	1.00	mg/L	1.0000		93	60-140			
Matrix Spike (BE23102-MS1)	Source:	1205011	1-03	Prepared:	05/31/12	11:10	Analyzed:	06/01/12	15:02	
Total Nitrogen	4.87	1.00	mg/L	5.0000	U	97	85-115			

1205011 DRAFT 06 04 12 1430

Page 6 of 8

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Site Name:

Dimock Residential Groundwater

Project #: DAS R33989

Notes and Definitions

%REC Percent Recovery

RPD Relative Percent Difference

U Analyte included in the analysis, but not detected at or above the quantitation limit.

Quantitation Limit: The lowest concentration of an analyte that can be reliably measured within specified limits of precision and accuracy for a specific laboratory analytical method and that takes into account analytical adjustments made during sample preparation and analysis.

REPORTING PROTOCOL FOR SOLID SAMPLE RESULTS: Percent Solids (percent dry wt at 105 degrees C) determinations are routinely performed for most organic and inorganic analyses. Consequently, these samples are analyzed wet and converted to a dry weight result for reporting purposes. If metals and mercury analyses are requested, they are routinely prepared for analyses by an initial drying at 60 degrees C, homogenized prior to digestion, and are analyzed and reported on a dry weight basis. Oil-type samples are analyzed and reported on a wet weight basis for all analyses because of the nature of the sample matrix. Any exceptions to this protocol will be noted in the narrative.

1205011 DRAFT 06 04 12 1430

Page 7 of 8

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Items for Project Manager Review

LabNumber	Analysis	Analyte	Exception	
	Total Nitrogen by n	nod, EPA (Water)	Special Units: (mg/L)	
1205011-01	Total Nitrogen by n	nod, EPA:	Status is Analyzed	
1205011-02	Total Nitrogen by mod. EPA;		Status is Analyzed	
1205011-03	Total Nitrogen by mod. EPA:		Status is Analyzed	
1205011-08	Total Nitrogen by mod. EPA		d. EPA : Status is Analyzed	
1205011-09	Total Nitrogen by mod. EPA		Status is Analyzed	
1205011-10	Total Nitrogen by mod. EPA:		Status is Analyzed	
1205011-11	Total Nitrogen by n	nod, EPA (Status is Analyzed	

Author: John Curry Date : 6/1/2012

Original Run Filename: Original Run Author's Signature: Current Run Filename: Current Run Author's Signature: Description: OM_6-1-2012_02-43-09AM.OMN created 6/1/2012 2:43:09 AM [Administrator]
OM_6-1-2012_02-43-09AM.OMN last modified 6/1/2012 3:11:58 AM [Administrator]
METHOD# 10-107-04-4-A

Wo 1205011 Dimock Residential Groundwater

	Ι		Channel 4					[
Sample	Rep.	Cup No.	Total Nitroger	i		Detection Time	ADF	MDF	Į
Sample	Rep.	Cup No.	Conc. (mg	Area	Height	Detection Time	ADF	ן ואוטר	ĺ
		<u> </u>	N/L)	(Vs)	(V)]	[
CLM 1	1	49	10.0000	23.6646	2.6729	6/1/2012@2:44:13 AM			}
CLM 2.	1	50	7.0000	17.8280	2.0267	6/1/2012@2:45:37 AM]
CLM 3	1	51	5.0000	12.2813	1.4027	6/1/2012@2:47:00 AM	1]
CLM 4	1	52	3.0000	7.2204	0.8194	6/1/2012@2:48:24 AM			1
CLM 5	1	53	1.0000	3.2497	0.3686	6/1/2012@2:49:47 AM]
BE23102-BLK1	1	54	(0.2239)	0.1625	0.0179	6/1/2012@2:51:10 AM			Ī
	С	alibration:	Table/Fig. 1						
COLUMN CHK	1	1	2.8874	7.4396	0.8488	6/1/2012@2:52:34 AM			TU= 3.0
BE23102-B\$1	1	2	(6.9971)	17.0521	1.9085	6/1/2012@2:53:58 AM			
BE23102-MRL1	1	3	(0.9314)	2.8647	0.3216	6/1/2012@2:55:21 AM			
1205011-01	1	4	<-0.1292°	0.3839	0.0425	6/1/2012@2:56:45 AM			
1205011-02	1	5	0.0250	0.7447	0.0836	6/1/2012@2:58:08 AM			
BE23102-DUP1	1	6	(0.0270)	0.7492	0.0846	6/1/2012@2:59:31 AM			
1205011-03	1	7	(0.0519	0.8075	0.0887	6/1/2012@3:00:54 AM			
BE23102-M\$1	1	8	4.8726	12.0830	1.3715	6/1/2012@3:02:16 AM			
	Sp	ke Level:	1 90.0000	46/7/12	5.0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
1205011-08	1	9	-0.1524	0.3297	0.0365	6/1/2012@3:03:39 AM			
1205011-09	1	10	0.0634	0.8338	0.0938	6/1/2012@3:05:02 AM		-	
1205011-10	1	11	(0.0542	0.8129	0.0917	6/1/2012@3:06:24 AM			
1205011-11	1	12	(0.5390	1.9469	0.2204	6/1/2012@3:07:46 AM			
BE23102-CCV1	1	52	2.6952	6.9901	0.7960	6/1/2012@3:09:09 AM			
	Kno	wn Conc:	5.0000	st 6/7/12	3.0				
BE23102-BLK2	1	54	-0.2239	0.1624	0.0173	6/1/2012@3:10:33 AM			

Analyte Properties Table for OM_6-1-2012_02-43-09AM.OMN

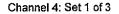
Channel 4
Total Nitrogen
mg N/L
First Örder
True
False
None
False
110
10-107-04-1-C
Direct/Bipolar
False
26
63

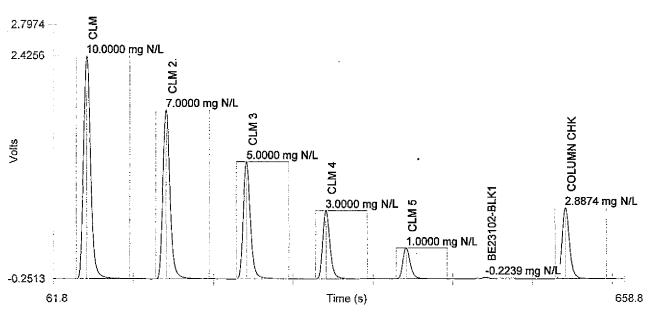
Jk 4/7/12

Switcher Chief

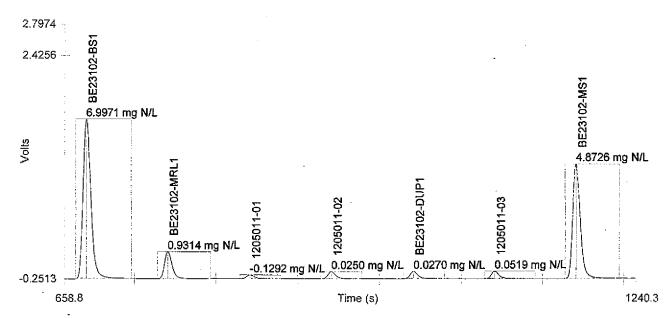
geko oleh ediri gen Lorendo de alaman bilan di 1912 Lorendo de 1913 de 1914 de 1914 Roman de 1915 de 1914 de 1914

Commenter and the series of propagation in the contract of the


	10 Will	er i nen i	11 to 1	5		+ 15 2			it stand
		region in the state of the state of	116.1	5	,				2.4%
		างสมโดยหนึ่งกระทั่งกั		1.5	(1)				1,00
		Revious County Target The off and sent as find the organizations			41.				5.47
									4.1.1
									3.414.4
		43.014.03						:	11.00
					1	1.77 E			
100				٠	100		:	2	The North Control
	ŕ	olige de où iffi⊊o do re						•	
		The state of the s		4	1.41				
				•	1				100 200
	٠	in a Lighten							13 - 11 12 14
		$\{(x,y)\in \{x,y\}: x\in \mathbb{R}_+, y\in \mathbb{R}_+$	11.11	· · · ·				:	
			10.00	1 2	14 m				
		ヨカチ きょかいだか							
					g = strikens		, in the state of the		
		人名英格兰 医硫基二甲基							1-13-11-11-11
		الله الإنسانية والعملية كالمراجع الراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع							
,									
		Loss throughtons	**	A			. t		
							14		


Additional training of the constant energy of states $\hat{\mathbf{u}}$

V. C. + 12
at his sales detection
n nyaan jiran ka
A Committee of the Comm
Contract Telephone
1. 有效的数据 (1.50年度)
1982 CA
र हा,का दे, त कि
161 00 00 00 00 MAR 6 12.
2011年2月1日第二日本
the second of the


Author: John Curry

WO 1205011 Dimock Residential Groundwater Date: 6/1/2012

Channel 4: Set 2 of 3

pk 6/7/12

DIM0205729 DIM0205853

tion and Computed to the Computer of the Second Second Second Second Second Second Second Second Second Second Second Se Computed Second Sec

Channel 4: Set 3 of 3

W0 1205011 Dimock Residential Groundwater

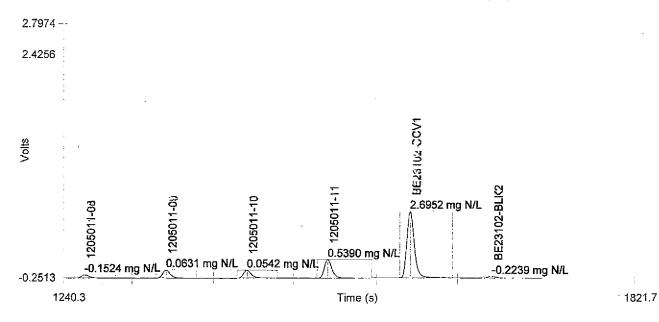
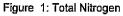
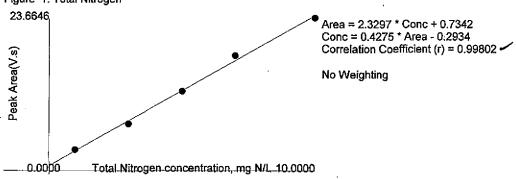




Table 1: Total Nitrogen

	Conc. (mg N/L)	Rep	Peak Area (Volt-s)	Peak Height (Volts)	% Residual	Detection Date	Detection Time
· 1	10.0000	1	23.6646	2,6729	1.5	6/1/2012	2:45:39 AM
2	7.0000	1	17.8280	2.0267	-4.6	6/1/2012	2:47:02 AM
3	5.0000	1	12.2813	1.4027	0.8	6/1/2012	2:48:26 AM
4	3.0000	1	7.2204	0.8194	6.5	6/1/2012	2:49:49 AM
5	1.0000	1	3.2497	0.3686	-6.1	6/1/2012	2:51:13 AM

Je 6/7/12

```
Which is a substitute of the object of (x,y)
 as a spin for which obstitutes as \rho \sim 10^{10}
1 (100 kg)
1 (100 kg)
1 (100 kg)
1 (100 kg)
1 (100 kg)
1 (100 kg)
                                                                                                                                            V (1) (2)
V (1) (1) (4)
V (2) (4)
(1) (2) (4)
                                                                                                         65 (1)
$ 21 (4)
$ 22 (4)
                                                .
                           1000 004
                                     TU TUD BOURTNITEBOURN I I I II.
IR I IV HAMBE TO BOURN III.
IR BOURT TO HAR HE WORLD BOURN I III.
                                                                            (1,0,\dots,n)^{\frac{1}{2}} \in \mathbb{N}^{n}
```

But the state of t

EPA Region 3 - OASQA - NUTRIENTS SAMPLE PREPARATION LOG

BE23102

bch_Nutrients.rpt

Project: Work Order No: Site Name: Analysis: Matrix:		ntial Groundwater by mod. EPA 353,2 FIA.		Location: Client: Account#: Bench Shee	EPA #3 Shelf 8B OSWER - Emerge 2012T03N303DC6 t Prepared Date:	• •	11:10	
Analyst: T.Cu DI Water Criteria: 18 Pipet Log#: Comments from WO:		/ N	Reagent Balance	Prep date: Purity correct Log: S) ate of Analysi	1860	· 5	METHOD/SOP: Temperature Log:	EPA 353.2 SNB 47
Date/Time of Ana 6/1/12 14:44 Standard/Reagen	,	CCV Std #: 1200 335 Vol Used (mL):		in: 121.%	# Temp/Time / /407 # Temp/Time	122.541711	Temp/Time out:	

3.0ml into 100 mL DE Samples < 6°C: (Y) / N

#: PNB 145

Maintenance Log#: SNB 227

EPA Region 3 - OASQA - NUTRIENTS SAMPLE PREPARATION LOG

BE23102

bch_Nutrients.rpt

Surrogate used:

LabNumber	Cont ID	Sample Type		e filtered or n)	Initial (mL)	Final (mL)	рΉ	<2	p) Adju		Spike1	Spike1 Amount µl	SourceID	ExtractionComments
1205011-01	С	SAM	N	0	50	50	ye	s	Instru Adju					11 Drinking Water
1205011-02	С	SAM		1	50	50								11 Drinking Water
1205011-03	С	SAM			50	50								11 Drinking Water
1205011-08	С	SAM			50	50						*****		11 Drinking Water
1205011-09	С	SAM			50	50						,		11 Drinking Water
1205011-10	С	SAM			50	50								11 Drinking Water
1205011-11	С	SAM			50	50	-							11 Drinking Water
BE23102-BLK1					50	50							-	
BE23102-BS1					100	100		1			1200336	7000	-	
BE23102-DUP1	1				50	50		1	,				1205011-02	
BE23102-MRL1					100	100					1200336	1000	-	
BE23102-MS1				/	50	50		J		J	1200335	2500	1205011-03	

rage:

Analyst: J. Curry Date: 5/31/12 SOP Number: 10-107-04-4-A

1000 mg/L	Stock Standa	ard Element	D: ERA _	1100618	SPEX	1100619		
Stock Solution	Element ID	Date Prepared	Expiratio n Date	Vendor	Stock Conc	Amount Used	Final Volume	Final Conc.
NO ₃ -N	1200335	5/31/12	6/13/12	ERA	1000 mg/L	10.0 mL	100 mL	100 mg/L
NO ₃ -N	1200334	5/31/12	6/13/12	SPEX	1000 mg/L	10.0 mL	100 mL	100 mg/L

* Certificates of Analysis Logbook#: SNB225

Balance log book#: SNB60

Element ID of Stock Solution used 1200335	Stock Conc.	Amount used (mL)	Final Volume	Final Concentration in mg NO3-N/L
CLM 1	100 mg/L	10.0	100 mL	10.0
CLM 2	100 mg/L	7.0	100 mL	7.0
CLM 3	100 mg/L	5.0	100 mL	5.0
CLM 4	100 mg/L	3.0	100 mL	3. 0
CLM 5	100 mg/L	1.0	100 mL	1.0
CLM 6	100 mg/L	N/A	100 mL	N/A

Reagent purity checked: YES or No

DI Water 18.2 Ω: YES or No

(Re	Reagents efer to method for preparation procedure information.)	Final Vol. (mL)	Date Made	Date Expires	CHIM Bar Code
Reagent #1	Sodium Hydroxide (NaOH) / 150 g	250	N/A -		<u> </u>
Reagent #2	Ammonium Chloride (NH ₄ Cl) / 85.0 g		, ,	, ,	5619
#2	Disodium Ethylenediamine Tetraacetic Acid Dihydrate (Na ₂ EDTA·2H ₂ O) / 1.0 g	1000	5/15/12	5/15/13	5685
Reagent #3	Phosphoric Acid (H ₃ PO ₄) / 100 mL				5693
πJ	$\begin{array}{c} Sulfanilamide \\ (C_6H_8N_2O_2S,4\text{-}(NH_2)C_6H_4SO_2NH_2)/40.0g \end{array}$		5/15/12	6/15/12	13903
	N-(1-naphthyl)ethylenediamine dihydrochloride (NED) / 1.0 g	1000_			5690
Reagent	Potassium Persulfate (K ₂ S ₂ O ₈) / 40, \$160				6059
#4	Boric Acid (H ₃ BO ₃) / 18·g ⁴⁹		5/31/12	5/31/13	4036
	Sodium Hydroxide (NaOH) / 9g.1743	1000			6020
		· .			

Comments:_	420	1205011	

Certificate of Analysis

PRODUCT:

1000 mg/L Nitrate as N (NO₃-N)

CATALOG NUMBER:

052 -125 mL; 991 - 500 mL

LOT NUMBER:

180111

ISSUE DATE:

January 31, 2011

REVISION DATE:

Original

STARTING MATERIAL:

Potassium Nitrate (KNO₃)

CERTIFIED CONCENTRATION1: UNCERTAINTY2:

1000 mg/L

0.4%

MATRIX:

18 megohm deionized water

DENSITY:

 1.0032 ± 0.0008 g/mL at 21.5°C and 776 mm Hg

TRACEABILITY3:

97.4%

NIST/SRM:

3185 Nitrate

VERIFICATION METHOD:

Ion Chromatography

STORAGE:

Store at 20-25°C

- 1. The Certified Concentration is the actual made-to concentration confirmed by ERA analytical verification.
- 2. The stated Uncertainty is the total propagated uncertainty at the 95% confidence interval. The uncertainty is based on the preparation of the product and includes uncertainty related to the starting material used and the volumetric and gravimetric measurements made. The method of calculating uncertainty is taken from the ISO Guide to the Expression of Uncertainty in Measurement (current version). The uncertainty applies to the product as supplied and does not take into account any required or optional dilutions and/or preparations the laboratory may perform while using this product.
- 3. Traceability Recovery = ((% Recovery certified standard)/(% Recovery NIST SRM))*100.

The traceability data shown were compiled by analyzing the ERA standards or their associated stock solutions against the applicable NIST SRMs.

This standard expires 1/2013. The certified values are monitored and purchasers will be notified of any significant changes resulting in recertification or withdrawal of this certified reference material during the period of validity of this certificate.

This product is intended to be used as either a calibration standard or a quality control check of the entire analytical process for the analytes/matrix included in the standard.

If you have any questions or need technical assistance, please call ERA technical assistance at 1-800-372-0122 or email to info@eragc.com

Certifying Officer:

6000 West 54th Ave., Arvada CO 80002

800-372-0122

fax: 303-421-0159

www.eraqc.com

SPEXertificate®

Certificate of Reference Material

Catalog Number:

AS-NO3N9-2X/2Y

Lot No. 2-78NO3N-2

Description:

1000 mg/L Nitrate- Nitrogen

Matrix:

H₂O

This Ion Chromatography Certified Reference Material, CRM, is intended primarily for use as a calibration standard or quality control standard for ion chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1005 mg/L

Uncertainty Associated with Measurement: ±3 mg/L

Certified Value is Traceable to: 3185*

* - indicates NIST SRM † - indicates SPEX CertiPrep CRM (when NIST SRM is not available) ‡ - prepared gravimetrically

The CRM is prepared gravimetrically using high purity Sodium Nitrate, Lot# 04091C. The certified value listed is the average of values obtained by classical wet assay and ion chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1004 mg/L

Method: Precipitate using Nitron Acetate. Filter, dry and weigh as C20H16N4HNO3

Instrumental Analysis by Ion Chromatography:

1005 mg/L

Uncertified Properties

Trace Ionic Impurities in the Actual Solution via IC Analysis:

Element	mg/L	Element	mg/L
Br-	<0.2	NO ₂ -	· <0.2
CI-	<0.5	PO ₄ -3	<0.3
F-	< 0.03	SO₄⁻²	<0.2

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. .This CRM is guaranteed stable and accurate to +/- 0.5% of the certified value. This includes uncertainty components due to preparation, homogeneity by the most precise method, short term and long term stability as well as transpiration loss. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly closed and stored under ambient laboratory conditions.

MAR - - 2011

Date of Certification:

©2009 SPEX CertiPrep, Inc.

Report of Certification

This Certified Reference Material (CRM) has been prepared and certified under an ISO 9001:2000, ISO 17025:2005, and ISO Guide 34:2000 quality system consistent with the following quality standards:

- Guide To The Expression Of Uncertainty In Measurement 1997
- EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement — Second Edition
- ASTM Guide D6362-98
- NIST Technical Note 1297
- ISO 17025:2005: General Requirements for the Competence of Testing and Calibration Laboratories — Certified by A2LA
- ISO Guide 31:2000: Reference Materials Contents of Certificates and Labels

- ISO Guide 34:2000: General Requirements for the Competence of Reference Material Producers — Certified by A2LA
- ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers
- ISO/REMCO N280
- Compliant with 10CFR50, Appendix B as applied to Chemicals & Reagents (NRC)
- Compliant with 10CFR21, Reporting of Defects and Non-compliance (NRC)

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9001:2000, ISO 17025:2005, and ISO Guide 34:2000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further assistance, please contact the Sales Support Department at crmsales@spexcsp.com.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles (where appropriate), and Class A/calibrated volumetrics have been used in all preparations.

Homogeneity:

The homogeneity of the CRM has been confirmed by procedures consistent with ISO 17025:2005, ISO Guide 34:2000, and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed to prove homogeneity in accordance with our internal procedure 4600-HOMOGEN-1A. This is consistent with the intended use of the CRM.

Statistical Estimator and Confidence Limits:

The certified value 'X' listed on the reverse of this document is at the 95% level of confidence and can be expressed as:

- X = x±U where x=measured value, U=expanded uncertainty
- U= ku_C where k=2 is the coverage factor at the 95% confidence level U_C is obtained by combining the individual element standard uncertainty components u_i , and $u_C = \sqrt{\sum u_i^2}$

Certification Traveler Report:

All certified values reported were derived from the Traveler Report (SPEX CertiPrep's traceability documentation) identified by the lot number of this CRM. For further assistance, please contact the Sales Support Department at crmsales@spexcsp.com.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this Reference Material shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Ave, Metuchen, NJ 08840 www.spexcsp.com • E-mail: crmsales@spexcsp.com Phone: 1-800-LAB-SPEX • Fax: 732-603-9647

Total Suspended Solids (TSS) Technical Review Checklist (TRC) Checklist

For Internal Use Only SOP R3-QA106-110311

Site Name: <u>Dimock Residential Groundwater</u> WO#:	1205011
Analyst: J. Curry Date Matrix (circle): Solid Aqueous Other	given to Reviewer: 6/1//2
Matrix (circle): Solid Aqueous Other	
Program (circle): Superfund / RCRA / WPD (NPDES) / S	DWA / Other OSWER - Emergency Response
Trogram (anoto), Superiand, Rollin, 1112 (111202), S.	Diviriy others: OS WERY Emergency Response
The signature below indicates the following:	
This data meets the needs of the customer according to the request.	
The analysis was performed as per the SOP, or exceptions documented	
• All documentation needed to recreate the analyses has been reviewed.	•
Data Review status set to Peer Reviewed in Element.	
Peer Reviewer signature	Date accepted 6/1/12
If any data for this case is stored with another case file, give Site Name a	nd WO#
Peer Reviewer Completes Section Below:	
General:	YES NO N/A Comments
Raw data is identified with sample IDs, site name,	
WO#, analyst name, date of analysis.	<u> </u>
Is the NQL appropriate for the project DQOs?	
(<10 for 100 mls, <4 for 250 mls)	<u> </u>
Are the sample #s clearly identified and matched to	
the assignment sheet?	
Are technical holding times met? (7 Days from collection)	·
Quality Control:	
Was the analytical balance calibrated to bracket reported results?	/
Are balance verifications acceptable?	<u> </u>
Were class one weights used in analysis?	<u> </u>
Was oven calibrated to 104° C? (± 2° C)	/
Are all appropriate measures of precision and accuracy included	
at correct frequency and meets the required limits?	
(see limits below)	
Calculations/Report:	
Calculations and transcriptions checked -	
at least 10% calculations checked.	
Element Draft Report reviewed.	<u> </u>
Deviations and problems documented.	
Is the raw data package complete, labeled, and legible	
with date and analyst signature?	<u> </u>
Are qualifier codes correctly applied, outliers flagged and corrective actions documented?	
W	
Are sample preparation steps described with sufficient	
detail to recalculate data?	
Are the appropriate significant figures reported?	
Is the report free of typographical and grammatical errors and does it follow the accepted format?	
errors and noes it tonow the accepted formal?	v

Page 1 of 2

Analyte	LCM % Recovery Limits	LD2 Precision Limits	LRB Method Blank	CLC	Avg of 3 weighings (if needed)
TSS	Use vendor limits	Abs. Difference: UWL = 15 mg/L UCL = 20 mg/L RPD < 20% 1 per 10 samples	Fails if \geq NQL and $> 1/10$ th of sample	1 per 10 samples and at end	RSD <u><</u> 25%

· · · ·	
ulvst Ensures that the Data Case File is Co	omplete and Accurate as per SOP R3QA-066:
Bench sheet or Work Order list	Appropriate TV sheets / Certificates of Analysis
Sample Prep logs	Element Peer Review report
Instrument run log. 46 6/7//7	
	Raw data
Instrument run log. #66/1/12 Standard/Reagent Prep log #66/1/12	Data status set to analyzed
·	Data status set to analyzed
·	Data status set to analyzed
·	Data status set to analyzed
·	Data status set to analyzed
·	Data status set to analyzed
·	Data status set to analyzed
•	Data status set to analyzed
•	Data status set to analyzed
Standard/Reagent Prep log 1/2 6/1/12 ditional Comments by Analyst on data issues:	Data status set to analyzed

Oct 2010

Page 2 of 2

I:\ASQAB_AT Team\Checklists\TSS TRC 2008.doc

Report Narrative

SVOAs Analysis Note:

All samples were extracted by EPA SW-846 Method 3520C followed by analysis using EPA SW-846 Method 8270D. Refer to notes in case file for additional information regarding the analysis.

For this project one additional compound is added to the SVOC analysis; 1-methylnaphthalene. This is a non-routine analysis. All current in-house quality control limits were met.

For all samples, quantitation limits for 2,4-dinitrophenol are rejected qualifed "R" due to zero percent recovery in the low-spike quality control check (BS1) and less than 10% recovery in the mid-level spike quality control check (BS2). For all samples 4,6-dinitro-2-methylphenol and pentachlorophenol had less than 10% recovery in the low-spike quality control check (BS1) but within acceptance limits in the mid-level spike quality control check (BS2); therefore, quantitation limits are raised to the mid-level value. In the report, only 21 compounds are reported for blank spike quality control check samples. Quality control information about the additional spiked compounds is available in the case file.

Results for a limited number of compounds found in all samples have been qualified "B" because of contamination found in either the method blank, field blank, or equipment blank.

Glycols by HPLC/MS/MS Note:

Samples were analyzed for diethylene glycol (DiG) (CAS# 111-46-6), triethylene glycol (TriG) (112-27-6), tetraethylene glycol (TeG) (112-60-7), 2-butoxyethanol (2-Bu) (111-76-2) and 2-methoxyethanol (2-Me)(109-86-4) by HPLC/MS/MS (inst id: TQD-LCMSMS) on a Waters Atlantis dC18 3um 2.1 x 150mm column (s/n-0141301481).

An HPLC/MS/MS method does not currently exist for these analytes. SOP R3QA239 is in preparation. ASTM D 7731-11 and EPA SW-846 Methods 8000C and 8321 were followed for method development and QA/QC limits where applicable. All applicable OASQA On Demand QA/QC protocols were followed. All QC were within criteria. The aqueous samples were injected without extraction onto the HPLC/MS/MS system.

Refer to notes in the case file for additional information regarding the analysis.

Nitrite/Nitrate Analysis Note:

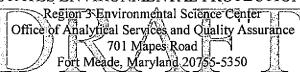
Samples were run as an 'On-Demand' analysis..

Total Nitrogen Analysis Note:

Samples were run as an 'On-Demand' analysis..

1205011 DRAFT 06 04 12 1434 Page 1 of 8

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350


Site Name: Dimock Residential Groundwater

Project #: DAS R33989

ANALYTICAL REPORT FOR SAMPLES

Station ID	Laboratory ID	Matrix	Date Sampled	Date Received
FB22	1205011-01	Water	05/22/12 11:58	05/23/12 12:22
HW64	1205011-02	Drinking Water	05/22/12 11:10	05/23/12 12:22
HW64-P	1205011-03	Drinking Water	05/22/12 11:40	05/23/12 12:22
FB23	1205011-08	Water	05/23/12 13:25	05/24/12 11:53
HW63z	1205011-09	Drinking Water	05/23/12 13:10	05/24/12 11:53
HW63	1205011-10	Drinking Water	05/23/12 13:09	05/24/12 11:53
HW62	1205011-11	Drinking Water	05/22/12 15:59	05/24/12 11:53

Site Name: Dimock Residential Groundwater

Project #: DAS R33989

Physical Parameters

Analyte		Result	Flags/ Qualifiers	Quantitation Limit	Units	Dilution	Prepared	Analyzed	Method/SOP#	
Lab ID: Station ID: Sample Matrix: Collected:	1205011-01 FB22 Water 05/22/2012									
Total Suspended S		U		10	mg/L	1	05/24/12	05/25/12 10:00	SM2540D/R3QA10	5

Physical Parameters

Analyte		Result	Flags/ Qualifiers	Quantitation Limit	Units	Dilution	Prepared	Analyzed	Method/SOP#
Lab ID:	1205011-02								
Station ID:	HW64								
Sample Matrix:	Drinking Water				-				
Collected:	05/22/2012				•	•			
Total Suspended So	olids	U		. 10	mg/L	1	05/24/12	05/25/12 10:00	SM2540D/R3QA

Physical Parameters

Analyte		Result	Flags/ Qualifiers	Quantitation Limit	Units	Dilution	Prepared	Analyzed	Method/SOP#
Lab ID: Station ID: Sample Matrix: Collected:	1205011-03 HW64-P Drinking Water 05/22/2012								
Total Suspended So	olids	U		10	mg/L	I	05/24/12	05/25/12 10:00	SM2540D/R3QA106

1205011 DRAFT 06 04 12 1434

Page 3 of 8

Region 3 Environmental Science Center Office of Analytical Services and Quality Assurance 701 Mapes Road Fort Meade, Maryland 20755-5350

Site Name: Dimock Residential Groundwater Project #: DAS R33989

Physical Parameters

Analyte		Result	Flags/ Qualifiers	Quantitation Limit	Units	Dilution	Prepared	Analyzed	Method/SOP#
Lab ID:	1205011-08								
Station ID:	FB23								
Sample Matrix:	Water								
Collected:	05/23/2012								•
Total Suspended S	olids	. U		10	mg/L	1	05/24/12	05/25/12 10:00	SM2540D/R3QA106

Physical Parameters

Analyte		Result	Flags/ Qualifiers	Quantitation Limit	Units	Dilution	Prepared	Analyzed	Method/SOP#
Lab ID: Station ID: Sample Matrix: Collected:	1205011-09 HW63z Drinking Water 05/23/2012								
Total Suspended So	olids	U		10	mg/L	1	05/24/12	05/25/12 10:00	SM2540D/R3QA10

Physical Parameters

	Analyte		Result	Flags/ Qualifiers	Quantitation Limit	units	Dilution	Prepared	Analyzed	Method/SOP#
_	Lab ID: Station ID: Sample Matrix: Collected:	1205011-10 HW63 Drinking Water 05/23/2012								
	Total Suspended S	olids	U		10	mg/L	1	05/24/12	05/25/12 10:00	SM2540D/R3QA100

1205011 DRAFT 06 04 12 1434

Page 4 of 8

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Site Name: Dimock Residential Groundwater

Project #: DAS R33989

Physical Parameters

Analyte		Result	Flags/ Qualifiers	Quantitation Limit	Units	Dilution	Prepared	Analyzed	Method/SOP#
Lab ID:	1205011-11								
Station ID:	HW62								
Sample Matrix:	Drinking Water								
Collected:	05/22/2012								
Total Suspended S	olids	υ.		10	mg/L	1	05/24/12	05/25/12 10:00	SM2540D/R3QA106

1205011 DRAFT 06 04 12 1434 Page 5 of 8

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Site Name: Dimock Residential Groundwater

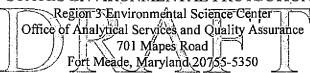
Project #: DAS R33989

RPD

%REC

QC Data Physical Parameters

Spike


Source

Quantitation

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BE22406 - TDS/TSS prep										
Blank (BE22406-BLK1)				Prepared:	05/24/12	12:37	Analyzed:	05/25/12	10:00	
Total Suspended Solids	U	10	mg/L						·	
Duplicate (BE22406-DUP1)	Sour	ce: 120501	1-02	Prepared:	05/24/12	12:37	Analyzed:	05/25/12	10:00	
Total Suspended Solids	U	10	mg/L		0				20	
Reference (BE22406-SRM1)				Prepared:	05/24/12	12:37	Analyzed:	05/25/12	10:00	
Total Suspended Solids	43		mg/L	46.200		93	77-115		· -	

1205011 DRAFT 06 04 12 1434 Page 6 of 8

Site Name:

Dimock Residential Groundwater

Project #: DAS R33989

Notes and Definitions

%REC Percent Recovery

RPD Relative Percent Difference

U Analyte included in the analysis, but not detected at or above the quantitation limit.

Quantitation Limit: The lowest concentration of an analyte that can be reliably measured within specified limits of precision and accuracy for a specific laboratory analytical method and that takes into account analytical adjustments made during sample preparation and analysis.

REPORTING PROTOCOL FOR SOLID SAMPLE RESULTS: Percent Solids (percent dry wt at 105 degrees C) determinations are routinely performed for most organic and inorganic analyses. Consequently, these samples are analyzed wet and converted to a dry weight result for reporting purposes. If metals and mercury analyses are requested, they are routinely prepared for analyses by an initial drying at 60 degrees C, homogenized prior to digestion, and are analyzed and reported on a dry weight basis. Oil-type samples are analyzed and reported on a wet weight basis for all analyses because of the nature of the sample matrix. Any exceptions to this protocol will be noted in the narrative.

1205011 DRAFT 06 04 12 1434

Page 7 of 8

Region 3 Environmental Science Center
Office of Analytical Services and Quality Assurance
701 Mapes Road
Fort Meade, Maryland 20755-5350

Items for Project Manager Review

LabNumber	Analysis	Analyte	Exception	
	Total Suspended So	olids by 25 (Water)	Special Units: (mg/L)	_
1205011-01	Total Suspended So	olids by 25	Status is Analyzed	
1205011-02	Total Suspended So	olids by 25	Status is Analyzed	
1205011-03	Total Suspended So	olids by 25	Status is Analyzed	
1205011-08	Total Suspended So	olids by 25	Status is Analyzed	
1205011-09	Total Suspended So	olids by 25	Status is Analyzed	
1205011-10	Total Suspended So	olids by 25	Status is Analyzed	
1205011-11	Total Suspended So	olids by 25	Status is Analyzed	

EPA Region 3 - OASQA - TSS - SAMPLE PREPARATION/RUN LOG

BE22406 bch_TSS.rpt

OSWER - Emergency Response

Account#: 2012T03N303DC6A3TARS00

Project: Work Order No: DAS R33989

1205011

Site Name:

Dimock Residential Groundwater

Analysis:

Total Suspended Solids by 2540D

Matrix:

Water

Comments from WO:

Analyst: J. Corry

SOP: _R3 QA-106

DI H2O Source/ Log #: H105/SNB31 Resistivity: 18.2 Ω_

Balance ID: __ P119650_ Weight Set ID: __08954_

SOLOT#: (2031-507 TV: 46.2 Accept. Limits: 36.4-53.2 Cert. Log: SNB222

Client:

Location: EPA #3 Shelf 8B

Oven ID: _B23-2508__ temp criteria: 104 ± 1C

Oven Reference Thermometer S/N: 1992_

wt. criteria: $\pm 2\%$ for <1 g and $\pm 0.5\%$ for ≥ 1 g

Prep Date: 5/24/16 Pre-weight filters Yes	Analyzed Date: <u>5/25/12</u> Date: <u>N/A</u>	CLC (1 per 10 samples and at end)
Wgt 1 True N/A Observed Wgt N/A	Wgt 1 True 0.1000 Observed Wgt 0.0999 /	CLC 1 True Wgt 2.000 Observed Wgt 0.200
Wgt 2 True Observed Wgt	Wgt 2 True <u>O. 2000</u> Observed Wgt <u>0.2001</u> /	CLC 2 True Wgto 2000 Observed Wgt O. 200Z
Wgt 3 True Observed Wgt	Wgt 3 True 0.5000 Observed Wgt 0.5001 -/	CLC 3 True Wgt 0.2000 Observed Wgt 0.2001

EPA Region 3 - OASQA - TSS - SAMPLE PREPARATION/RUN LOG

BE22406

bch_TSS.rpt

LabNumber ID	Cont ID	Sample Type	Pan ID	Filter Wt. (g) B	Sample Vol (mL) C	Pan/Filter wt. + Residue (g) A Date: \$/24/12/5/15/10 Time/temp In: 1550 /105°C Time/temp Out: 1000/105°C	Pan/Filter wt. + Residue (g) A Date: 5/25/12 Time/temp In: 1210/105°C Time/temp Out: 14/00/105°C	Pan/Filter wt. + Residue (g) A Date: Time/temp In: Time/temp Out:	Sample Result (mg/L) (A-B) x 1000 x1000 C	SourceID
1205011-01	В	SAM	D8080	0.1179	100 ML	0.1179	0.1179	N/A	0	
1205011-02	В	SAM	Deos!	0.1139	1	0.1141	0.1139		0	
1205011-03	В	SAM	D8082	0.1163		0.1163	0.1167		0	
1205011-08	В	SAM	D8083	0.1173		0.1175	0.1177	-	2	1
1205011-09	В	SAM	D 8 084	0.1166		0.1167	0.1166	1	0	
1205011-10	В	SAM	D8085	0.1246		0,1247	0.1246	·	0 -	
1205011-11	В	SAM		0.1160		0.1160	0,1160		0	
BE22406-BLK1			D8087	0.1164		0.1164	0.1164	1	. 0	
BE22406-DUP1			D8089	0.1164%		0.1174	ð.117 - 4		0	1205011-02
BE22406-SRM1			D80890	2 5/29	n	0.1260	0.1255		43	-

[&]quot;A", "B", and "C" as defined in Section 12.0 of the SOP, Data Analysis and Calculations.

DIM0205729

TSS Worksheet

Analyst: J. Curry Date: 5/25/2012 Batch ID: BE22406

Dimock Residential Groundwater

Site Name: WO#: 1205011 TSS

В	Α			Α			Α				
Filter (g)	Res 1 (g)	Diff (g)	mg/L	Res 2 (g)	Diff (g)	mg/L	Res 3 (g)	Diff (g)	mg/L	Reported AVG/RPD	1_
0.1179	0.1179	0.0000	0	0.1179	0.0000	0	#N/A	#N/A	#N/A	0	
0.1139	0.1141	0.0002	2	0.1139	0.0000	0	#N/A	#N/A	#N/A	. 0	
0.1163	0.1163	0.0000	0	0.1167	0.0004	4	#N/A	#N/A	#N/A	0	
0.1173	0.1175	0.0002	2	0.1177	0.0004	4	#N/A	#N/A	#N/A	2	
0.1166	0.1167	0.0001	1	0.1166	0.0000	0	#N/A	#N/A	#N/A	0	
0.1246	0.1247	0.0001	1	0.1246	0.0000	0	#N/A	#N/A	#N/A	0	
0.1160	0.1160	0.0000	0	0.1160	0.0000	0	#N/A	#N/A	#N/A	0	
0.1164	0.1164	0.0000	0	0.1164	0.0000	0	#N/A	#N/A	#N/A	0	
0.1174	0.1174	0.0000	0	0.1174	0.0000	0	#N/A	#N/A	#N/A	0 AVG= 0	RPD=0
0.1212	0.1260	0.0048	48	0.1255	0.0043	43	#N/A	#N/A	#N/A	43	
	Filter (g) 0.1179 0.1139 0.1163 0.1173 0.1166 0.1246 0.1160 0.1164 0.1174	Filter (g) Res 1 (g) 0.1179 0.1179 0.1139 0.1141 0.1163 0.1163 0.1173 0.1175 0.1166 0.1167 0.1246 0.1247 0.1160 0.1160 0.1164 0.1164 0.1174 0.1174	Filter (q) Res 1 (q) Diff (g) 0.1179 0.1179 0.000 0.1139 0.1141 0.0002 0.1163 0.1163 0.0000 0.1173 0.1175 0.0002 0.1166 0.1167 0.0001 0.1246 0.1247 0.0001 0.1160 0.1160 0.0000 0.1164 0.1164 0.0000 0.1174 0.1174 0.0000	Filter (g) Res 1 (g) Diff (g) mg/L 0.1179 0.1179 0.0000 0 0.1139 0.1141 0.0002 2 0.1163 0.1163 0.0000 0 0.1173 0.1175 0.0002 2 0.1166 0.1167 0.0001 1 0.1246 0.1247 0.0001 1 0.1160 0.1160 0.0000 0 0.1164 0.1164 0.0000 0 0.1174 0.1174 0.0000 0	Filter (g) Res 1 (g) Diff (g) mg/L Res 2 (g) 0.1179 0.1179 0.0000 0 0.1179 0.1139 0.1141 0.0002 2 0.1139 0.1163 0.1163 0.0000 0 0.1167 0.1173 0.1175 0.0002 2 0.1177 0.1166 0.1167 0.0001 1 0.1166 0.1246 0.1247 0.0001 1 0.1246 0.1160 0.1160 0.0000 0 0.1164 0.1164 0.1164 0.0000 0 0.1164 0.1174 0.1174 0.0000 0 0.1174	Filter (a) Res 1 (a) Diff (a) mg/L Res 2 (a) Diff (a) 0.1179 0.1179 0.0000 0 0.1179 0.000 0.1139 0.1141 0.0002 2 0.1139 0.000 0.1163 0.1163 0.0000 0 0.1167 0.0004 0.1173 0.1175 0.0002 2 0.1177 0.0004 0.1166 0.1167 0.0001 1 0.1166 0.0000 0.1246 0.1247 0.0001 1 0.1246 0.0000 0.1160 0.1160 0.0000 0 0.1164 0.0000 0.1164 0.1164 0.0000 0 0.1164 0.0000 0.1174 0.1174 0.0000 0 0.1174 0.0000	Filter (a) Res 1 (g) Diff (g) mg/L Res 2 (g) Diff (g) mg/L 0.1179 0.1179 0.0000 0 0.1179 0.0000 0 0.1139 0.1141 0.0002 2 0.1139 0.0000 0 0.1163 0.1163 0.0000 0 0.1167 0.0004 4 0.1173 0.1175 0.0002 2 0.1177 0.0004 4 0.1166 0.1167 0.0001 1 0.1166 0.0000 0 0.1246 0.1247 0.0001 1 0.1246 0.0000 0 0.1160 0.1160 0.0000 0 0.1160 0.0000 0 0.1164 0.1164 0.0000 0 0.1164 0.0000 0 0.1174 0.1174 0.0000 0 0.1174 0.0000 0	Filter (g) Res 1 (g) Diff (g) mg/L Res 2 (g) Diff (g) mg/L Res 3 (g) 0.1179 0.1179 0.0000 0 0.1179 0.0000 0 #N/A 0.1139 0.1141 0.0002 2 0.1139 0.0000 0 #N/A 0.1163 0.1163 0.0000 0 0.1167 0.0004 4 #N/A 0.1173 0.1175 0.0002 2 0.1177 0.0004 4 #N/A 0.1166 0.1167 0.0001 1 0.1166 0.0000 0 #N/A 0.1246 0.1247 0.0001 1 0.1246 0.0000 0 #N/A 0.1160 0.1160 0.0000 0 0.1164 0.0000 0 #N/A 0.1164 0.1164 0.0000 0 0.1164 0.0000 0 #N/A 0.1174 0.1174 0.0000 0 0.1174 0.0000 0 #N/A	Filter (g) Res 1 (g) Diff (g) mg/L Res 2 (g) Diff (g) mg/L Res 3 (g) Diff (g) 0.1179 0.1179 0.0000 0 0.1179 0.0000 0 #N/A #N/A 0.1139 0.1141 0.0002 2 0.1139 0.0000 0 #N/A #N/A 0.1163 0.1163 0.0000 0 0.1167 0.0004 4 #N/A #N/A 0.1173 0.1175 0.0002 2 0.1177 0.0004 4 #N/A #N/A 0.1166 0.1167 0.0001 1 0.1166 0.0000 0 #N/A #N/A 0.1246 0.1247 0.0001 1 0.1246 0.0000 0 #N/A #N/A 0.1160 0.0160 0.0000 0 0.1160 0.0000 0 #N/A #N/A 0.1164 0.1164 0.0000 0 0.1164 0.0000 0 #N/A 0.1174 0.1	Filter (g) Res 1 (g) Diff (g) mg/L Res 2 (g) Diff (g) mg/L Res 3 (g) Diff (g) mg/L 0.1179 0.1179 0.0000 0 0.1179 0.0000 0 #N/A #N/A #N/A 0.1139 0.1141 0.0002 2 0.1139 0.0000 0 #N/A #N/A #N/A #N/A 0.1163 0.1163 0.0000 0 0.1167 0.0004 4 #N/A #N/A #N/A 0.1173 0.1175 0.0002 2 0.1177 0.0004 4 #N/A #N/A #N/A 0.1166 0.1167 0.0001 1 0.1166 0.0000 0 #N/A #N/A #N/A 0.1246 0.1247 0.0001 1 0.1246 0.0000 0 #N/A #N/A #N/A 0.1160 0.1160 0.0000 0 0.1160 0.0000 0 #N/A #N/A #N/A 0.1164 0.11	Filter (g) Res 1 (g) Diff (g) mg/L Res 2 (g) Diff (g) mg/L Res 3 (g) Diff (g) mg/L Reported AVG/RPD 0.1179 0.1179 0.0000 0 0.1179 0.0000 0 #N/A #N/A #N/A 0 0.1139 0.1141 0.0002 2 0.1139 0.0000 0 #N/A #N/A #N/A 0 0.1163 0.1163 0.0000 0 0.1167 0.0004 4 #N/A #N/A #N/A 0 0.1173 0.1175 0.0002 2 0.1177 0.0004 4 #N/A #N/A #N/A 2 0.1166 0.1167 0.0001 1 0.1166 0.0000 0 #N/A #N/A #N/A 4 0.1246 0.1247 0.0001 1 0.1246 0.0000 0 #N/A #N/A #N/A 0 0.1160 0.1160 0.0160 0 0.1164 0.0000 0

A Waters Company

Certificate of Analysis

Lot No. Q031-507

WasteWatR™ Hardness

Catalog No. 507
Issue Date: July 31, 2011
Revision Date: Original

Certification

	Certified Value ¹ (mg/l)	Uncertainty ²	QC PALs™ ³ (mg/l)	PT PALs™ ⁴ (mg/l)
Parameter_	, -· ,			
total suspended solids	46.2	1.0%	38.3 - 50.3	35.4 - 53.2
calcium	29.7	1.0%	27.2 - 32.2	26.3 - 33.9
magnesium	12.1	1.0%	11.0 - 13.2	10.3 - 13.9
calcium hardness as CaCO ₃	74.2	1.0%	67.8 - 80.5	65.8 - 84.6
total hardness as CaCO ₃	124	1.0%	113 - 135	. 108 - 142

Analytical Verification

	Ro	ound Robin Data ⁵	NIST Trace	eability		
	Mean	Recovery	· n	SRM Number	Recovery	
	(mg/l)	(%)	÷		(%)	
Parameter						
total suspended solids	44.3	· 95 . 9%	1300	SRM not available	_	
calcium	29.7	100%	72	SRM 3109a	102%	
magnesium	12.1	100%	74	SRM 3131a	100%	
calcium hardness as CaCO ₃	74.9	101%	45	SRM 3109a	102%	
total hardness as CaCO ₃	124	100%	167	SRM 3109a/3131a	101%	

Please see footnotes on back

6000 West 54th Ave., Arvada, CO 80002

800-372-0122

fax: 303-421-0159

www.eraqc.com

- 1. The Certified Values are the actual "made-to" concentrations confirmed by ERA analytical verification.
- 2. The stated **Uncertainty** is the total propagated uncertainty at the 95% confidence interval. The uncertainty is based on the preparation and internal analytical verification of the product by ERA, multiplied by a coverage factor which is equal to the Student t factor at a 95% confidence interval at n-1 degrees of freedom. The uncertainty applies to the product as supplied and does not take into account any required or optional dilution and/or preparations the laboratory may perform while using this product.
- 3. The QC Performance Acceptance Limits (QC PALs™) are based on actual historical data collected in ERA's Proficiency Testing program. The QC PALs™ reflect any Inherent blases in the methods used to establish the limits and closely approximate a 95% confidence interval of the performance that experienced laboratories should achieve using accepted environmental methods. Use the QC PALs™ to realistically evaluate your performance against your peers.
- 4. The PT Performance Acceptance Limits (PT PALsTM) are calculated using the regression equations and fixed acceptance criteria specified in the NELAC proficiency testing requirements. Use the PT PALsTM when analyzing this QC standard alongside USEPA and NELAC compliant PT standards. Please note that many PT study acceptance limits are concentration dependent (some non-linearly) and, therefore, the acceptance limits of this QC standard and any PT standard may differ relative to their difference in concentrations.
- 5. The Analytical Verification data include the mean value, percent recovery and number of data points reported by the laboratories in our Proficiency Testing study compared to the Certified Values. In addition, where NIST Standard Reference Materials (SRMs) are available, each analyte has been analytically traced to the NIST SRM listed.

Traceability Recovery (%) = [(% recovery certified standard)/(% recovery NIST SRM)]*100

The traceability data shown were compiled by analyzing the ERA standards or their associated stock solutions against the applicable NIST SRMs.

6. This standard **expires 7/2014.** The certified values are monitored and purchasers will be notified of any significant changes resulting in recertification or withdrawal of this certified reference material during the period of validity of this certificate.

If you have any questions or need technical assistance, please call ERA technical assistance at 1-800-372-0122 or email to info@eraqc.com.

Certifying Officer: